Skip to main content

Prediction of Membrane Protein Interaction Based on Deep Residual Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

  • 856 Accesses

Abstract

The interaction of membrane proteins in organisms is directly related to their functions. Accurate prediction of membrane protein interaction can better predict its spatial structure. Therefore, it is of great significance to study the interaction of membrane proteins. Currently, there is no contact method specifically for membrane protein prediction. In this paper, a membrane protein prediction tool based on deep residual learning is established. Combined with the transformation of the covariance matrix, it can well predict the interaction of membrane proteins. Compared with other methods, the experimental data and results of this model are more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heijne, G.V.: Membrane proteins. Eur. J. Biochem. 120, 12 (1981)

    Article  Google Scholar 

  2. Kubota, Y., Nash, R.A., Klungland, A., et al.: Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J. 15(23), 6662–6670 (1997)

    Article  Google Scholar 

  3. GoBel, U., Sander, C., Schneider, R., et al.: Correlated mutations and residue contacts in proteins. Proteins Struct. Funct. Genet. 18(4), 309–317 (1994)

    Article  Google Scholar 

  4. Martin, L.C., Gloor, G.B., Dunn, S.D., et al.: Using information theory to search for co-evolving residues in proteins. Bioinformatics 21(22), 4116–4124 (2005)

    Article  Google Scholar 

  5. Feizi, S., et al.: Network deconvolution as a general method to distinguish direct dependencies in networks. Nat. Biotechnol. 31, 726 (2013)

    Article  Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25(2), 1097–1105 (2012)

    Google Scholar 

  7. Buchan, D.W.A., Jones, D.T.: Improved protein contact predictions with the MetaPSICOV2 server in CASP12. Proteins Struct. Funct. Bioinf. 86(Suppl 1), 17 (2017)

    Google Scholar 

  8. Remmert, M., Biegert, A., Hauser, A., et al.: HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9(2), 173–175 (2011)

    Article  Google Scholar 

  9. Ushkaryov, Y., Petrenko, A., Geppert, M., et al.: Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science 257(5066), 50–56 (1992)

    Article  Google Scholar 

  10. Udenfriend, S., Stein, S., Bohlen, P., et al.: Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178(4063), 871–872 (1972)

    Article  Google Scholar 

  11. Knapp, S.K.: Accelerate FPGA macros with one-hot approach. Electron. Des. 38, 71–78 (1990)

    Google Scholar 

  12. Fan, J., et al.: An overview of the estimation of large covariance and precision matrices. Econ. J. 19, C1–C32 (2016)

    MathSciNet  Google Scholar 

  13. Jones, D.T., et al.: High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics 34, 3308–3315 (2018)

    Article  Google Scholar 

  14. Maesschalck, R.D., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)

    Article  Google Scholar 

  15. Guu, S.M., Wu, Y.K.: Minimizing a linear objective function with fuzzy relation equation constraints. Fuzzy Optim. Decis. Making 1(4), 347–360 (2002)

    Article  MathSciNet  Google Scholar 

  16. Cawley, G.C.: On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Long, J., Shelhamer, ç­‰.: Fully convolutional networks for semantic segmentation. In: IEEE Transactions on Pattern Analysis & Machine Intelligence (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., et al.: Deep Residual learning for image recognition. In: IEEE Conference on Computer Vision & Pattern Recognition. IEEE Computer Society (2016)

    Google Scholar 

  19. Carlos, V.A., et al.: The significance of quantifiable residual normal karyotype hematopoietic cells for toxicity and outcome. Leuk. Lymphoma 52(6), 943 (2011)

    Article  MathSciNet  Google Scholar 

  20. Chizat, L., Bach, F.: Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks (2020)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Natural Science Foundation of China (61772357, 61502329, 61672371, and 61876217), Jiangsu Province 333 Talent Project, Top Talent Project (DZXX-010), Suzhou Foresight Research Project (SYG201704, SNG201610, and SZS201609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, T. et al. (2020). Prediction of Membrane Protein Interaction Based on Deep Residual Learning. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics