Skip to main content

Classification of Protein Modification Sites with Machine Learning

  • Conference paper
  • First Online:
  • 863 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Abstract

Lysine malonylation is a newly discovered type of protein post-translational modification, which plays an essential role in many biological activities. A good knowledge of malonylation sites can serve as guidance in solving a large number of biological problems, such as disease diagnosis and drug discovery. There have already been several experimental approaches to identify modification sites, but they are relatively expensive. In this work, we propose three novel machine learning models and utilizes several effective feature description methods. The model is trained based on the cross validation method named Split to Equal Validation (SEV). The experiments show that our model outperforms the others considerably.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mann, M., Jensen, O.N.: Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255–261 (2003)

    Article  Google Scholar 

  2. Appella, E., Anderson, C.W.: Post-translational modifications and activation of p53 by genotoxic stresses. FEBS J. 268, 2764–2772 (2001)

    Google Scholar 

  3. Walsh, G., Jefferis, R.: Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241–1252 (2006)

    Article  Google Scholar 

  4. Westermann, S., Weber, K.: Post-translational modifications regulate microtubule function. Nat. Rev. Mol. Cell Biol. 4, 938–947 (2003)

    Article  Google Scholar 

  5. Keller, J.N., Hanni, K.B., Markesbery, W.R.: Impaired proteasome function in Alzheimer’s disease. J. Neurochem. 75, 436–439 (2001)

    Article  Google Scholar 

  6. Maccioni, R.B., Munoz, J.P., Barbeito, L.: The molecular bases of Alzheimer’s disease and other neurodegenerative disorders. Arch. Med. Res. 32, 367–381 (2001)

    Article  Google Scholar 

  7. Ishigami, A., Maruyama, N.: Importance of research on peptidylarginine deiminase and citrullinated proteins in age-related disease. Geriatr. Gerontol. Int. 10, S53-S58 (2010)

    Google Scholar 

  8. Mangat, P., Wegner, N., Venables, P.J., Potempa, J.: Bacterial and human peptidylarginine deiminases: targets for inhibiting the autoimmune response in rheumatoid arthritis? Arthritis Res. Therapy 12, 209 (2010). https://doi.org/10.1186/ar3000

    Article  Google Scholar 

  9. Schwenzer, A., Jiang, X., Mikuls, T.R., Payne, J.B., Sayles, H., Quirke, A.M., et al.: Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann. Rheum. Dis. 75, 1876–1883 (2016)

    Article  Google Scholar 

  10. Brill, A., Fuchs, T.A., Savchenko, A.S., Thomas, G.M., Martinod, K., De Meyer, S.F., et al.: Neutrophil extracellular traps promote deep vein thrombosis in mice. J. Thromb. Haemost. 10, 136–144 (2012)

    Article  Google Scholar 

  11. Van Venrooij, W.J., Pruijn, G.J.M.: Citrullination: a small change for a protein with great consequences for rheumatoid arthritis. Arthritis Res. Therapy 2, 249–251 (2000)

    Article  Google Scholar 

  12. Guo, Q., Bedford, M.T., Fast, W.: Discovery of peptidylarginine deiminase-4 substrates by protein array: antagonistic citrullination and methylation of human ribosomal protein S2. Mol. BioSyst. 7, 2286–2295 (2011)

    Article  Google Scholar 

  13. Wang, S., Wang, Y.: Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochem. Biophys. Acta. 1829, 1126–1135 (2013)

    Google Scholar 

  14. Bicker, K.L., Subramanian, V., Chumanevich, A.A., Hofseth, L.J., Thompson, P.R.: Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination. J. Am. Chem. Soc. 134, 17015–17018 (2012)

    Article  Google Scholar 

  15. Stensland, M., Holm, A., Kiehne, A., Fleckenstein, B.: Targeted analysis of protein citrullination using chemical modification and tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 2754–2762 (2009)

    Article  Google Scholar 

  16. Hermansson, M., Artemenko, K.A., Ossipova, E., Eriksson, H., Lengqvist, J., Makrygiannakis, D., et al.: MS analysis of rheumatoid arthritic synovial tissue identifies specific citrullination sites on fibrinogen. Proteomics Clin. Appl. 4, 511–518 (2010)

    Article  Google Scholar 

  17. Bao, W., Yang, B., Huang, D., Wang, D., Liu, Q., Chen, Y., et al.: IMKPse: identification of protein malonylation sites by the key features into general PseAAC. IEEE Access 7, 54073–54083 (2019)

    Article  Google Scholar 

  18. Bao, W., Wang, D., Chen, Y.: Classification of protein structure classes on flexible neutral tree. IEEE/ACM Trans. Comput. Biol. Bioinf. 14, 1122–1133 (2017)

    Article  Google Scholar 

  19. Qiu, W., Xiao, X., Xu, Z., Chou, K.: iPhos-PseEn: identifying phosphorylation sites in proteins by fusing different pseudo components into an ensemble classifier. Oncotarget 7, 51270–51283 (2016)

    Article  Google Scholar 

  20. Qiu, W., Sun, B., Xiao, X., Xu, Z., Jia, J., Chou, K.: iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics 110, 239–246 (2017)

    Article  Google Scholar 

  21. Gao, J., Tao, X., Zhao, J., Feng, Y., Cai, Y., Zhang, N.: Computational prediction of protein epsilon lysine acetylation sites based on a feature selection method. Comb. Chem. High Throughput Screening 20, 629–637 (2017)

    Google Scholar 

  22. Cai, Y., Huang, T., Hu, L., Shi, X., Xie, L., Li, Y.: Prediction of lysine ubiquitination with mRMR feature selection and analysis. Amino Acids 42, 1387–1395 (2012). https://doi.org/10.1007/s00726-011-0835-0

    Article  Google Scholar 

  23. Hasan, M.A.M., Li, J., Ahmad, S., Molla, M.K.I.: predCar-site: carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue. Anal. Biochem. 525, 107–113 (2017)

    Article  Google Scholar 

  24. Cheng, X., Xiao, X., Chou, K.: pLoc-mEuk: predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Genomics 110, 50–58 (2018)

    Article  Google Scholar 

  25. Bao, W., Yuan, C., Zhang, Y., Han, K., Nandi, A.K., Honig, B., et al.: Mutli-features prediction of protein translational modification sites. IEEE/ACM Trans. Comput. Biol. Bioinf. 15, 1453–1460 (2018)

    Article  Google Scholar 

  26. Jia, J., Liu, Z., Xiao, X., Liu, B., Chou, K.: iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset. Anal. Biochem. 497, 48–56 (2016)

    Article  Google Scholar 

  27. Xu, Y., Wang, Z., Li, C., Chou, K.: iPreny-PseAAC: identify C-terminal cysteine prenylation sites in proteins by incorporating two tiers of sequence couplings into PseAAC. Med. Chem. 13, 544–551 (2017)

    Article  Google Scholar 

  28. Li, B., Hu, L., Niu, S., Cai, Y., Chou, K.: Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches. J. Proteomics 75, 1654–1665 (2012)

    Article  Google Scholar 

  29. Zhang, Q., Sun, X., Feng, K., Wang, S., Zhang, Y., Wang, S., et al.: Predicting citrullination sites in protein sequences using mRMR method and random forest algorithm. Comb. Chem. High Throughput Screening 20, 164–173 (2017)

    Google Scholar 

  30. Bao, W., Yang, B., Bao, R., Chen, Y.: LipoFNT: lipoylation sites identification with flexible neural tree. Complexity 2019, 1–9 (2019)

    Article  Google Scholar 

  31. Bao, W., Yang, B., Li, D., Li, Z., Zhou, Y., Bao, R.: CMSENN: computational modification sites with ensemble neural network. Chemometr. Intell. Lab. Syst. 185, 65–72 (2019)

    Article  Google Scholar 

  32. Shao, J., Xu, D., Tsai, S.N., Wang, Y., Ngai, S.M.: Computational identification of protein methylation sites through bi-profile Bayes feature extraction. PLoS ONE 4, e4920 (2009)

    Article  Google Scholar 

  33. Bao, W., Chen, Y., Wang, D.: Prediction of protein structure classes with flexible neural tree. Biomed. Mater. Eng. 24, 3797–3806 (2014)

    Google Scholar 

  34. Szilágyi, A., Skolnick, J.: Efficient prediction of nucleic acid binding function from low-resolution protein structures. J. Mol. Biol. 358, 922–933 (2006)

    Article  Google Scholar 

  35. Kumar, K.K., Pugalenthi, G., Suganthan, P.N.: DNA-Prot: identification of DNA binding proteins from protein sequence information using random forest. J. Biomol. Struct. Dyn. 26, 679–686 (2009)

    Article  Google Scholar 

  36. Lin, W.Z., Fang, J.A., Xiao, X., Chou, K.C.: iDNA-prot: identification of DNA binding proteins using random forest with grey model. PLoS ONE 6, e24756 (2011)

    Article  Google Scholar 

  37. Song, L., Li, D., Zeng, X. et al.: nDNA-prot: identification of DNA-binding proteins based on unbalanced classification. BMC Bioinform. 15, 298 (2014). https://doi.org/10.1186/1471-2105-15-298

  38. Shi, S.P., Qiu, J.D., Sun, X.Y., Suo, S.B., Huang, S.Y., Liang, R.P.: PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. BioSyst. 8, 1520–1527 (2012)

    Article  Google Scholar 

  39. Florian, G., Shubin, R., Chunaram, C., Jürgen, C., Matthias, M.: Predicting post-translational lysine acetylation using support vector machines. Bioinformatics 26, 1666 (2010)

    Article  Google Scholar 

  40. Li, S., Li, H., Li, M., Shyr, Y., Xie, L., Li, Y.: Improved prediction of lysine acetylation by support vector machines. Protein Peptide Lett. 16, 977–983 (2009)

    Google Scholar 

  41. Xu, Y., Wang, X.B., Ding, J., Wu, L.Y., Deng, N.Y.: Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. J. Theor. Biol. 264, 130–135 (2010)

    Article  Google Scholar 

  42. Suo, S.B., Qiu, J.D., Shi, S.P., Sun, X.Y., Huang, S.Y., Chen, X., et al.: Position-specific analysis and prediction for protein lysine acetylation based on multiple features. PLoS ONE 7, e49108 (2012)

    Article  Google Scholar 

  43. Shao, J., Xu, D., Hu, L., Kwan, Y.W., Wang, Y., Kong, X., et al.: Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Mol. BioSyst. 8, 2964–2973 (2012)

    Article  Google Scholar 

  44. Li, Y., Wang, M., Wang, H., Tan, H., Zhang, Z., Webb, G.I., et al.: Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features. Sci. Rep. 4, 5765 (2014)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the grants of the National Science Foundation of China, Nos. 61902337, 61702445, and the grant from the Ph.D. Programs Foundation of Ministry of Education of China (No. 20120072110040). The Shandong Provincial Natural Science Foundation, China (No. ZR2018LF005).

Author information

Authors and Affiliations

Authors

Contributions

Data Availability

To data used to support the findings of this study are available from the corresponding author upon request.

Author Contribution Statement

W.B. conceived the method. Z.L designed the method. B.Y. designed the website of this algorithm. Y.Z. conducted the experiments and W.B. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuehui Chen .

Editor information

Editors and Affiliations

Ethics declarations

Competing Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Bao, W., Cao, Y., Chen, Y. (2020). Classification of Protein Modification Sites with Machine Learning. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics