Skip to main content

Predicting LncRNA-miRNA Interactions via Network Embedding with Integrated Structure and Attribute Information

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12464))

Included in the following conference series:

Abstract

Accumulating evidence demonstrated that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are related with some complex human diseases. LncRNA-miRNA interactions (LMIs) play an important role in regulatory of gene networks. However, the biological experiments for detecting lncRNA-miRNA interactions are often expensive and time-consuming. Thus, it is urgent to develop computational method for predicting LMIs. In this paper, we propose a novel computational approach LMMAN to predict potential lncRNA-miRNA associations based on molecular associations network (MAN). More specifically, the known relationships among miRNA, lncRNA, protein, drug and disease are firstly integrated to construct a molecular association network. Then, a network embedding model LINE is employed to extract network behavior features of lncRNA and miRNA nodes. Finally, the random forest classifier is used to predict the potential lncRNA-miRNA interactions. In order to evaluate the performance of the proposed LMMAN approach, five-fold cross-validation tests are implemented on benchmark dataset lncRNASNP2. The proposed LMMAN approach can achieve the high AUC of 0.9644, which is obviously better than the existing methods. The promising results reveal that LMMAN can effectively predict new lncRNA-miRNA interactions and can be a good complement to relevant biomedical fields in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, S., Xuan, Z., Wang, L., Ping, P., Pei, T.: A novel model for predicting associations between diseases and LncRNA-miRNA pairs based on a newly constructed bipartite network. Comput. Math. Methods Med. 2018, 6789089 (2018)

    MATH  Google Scholar 

  2. Holley, C.L., Topkara, V.K.: An introduction to small non-coding RNAs: miRNA and snoRNA. Cardiovasc. Drugs Ther. 25, 151–159 (2011)

    Article  Google Scholar 

  3. Lin, S.L., Miller, J.D., Ying, S.Y.: Intronic microRNA (miRNA). J. Biomed. Biotechnol. 2006, 26818 (2006)

    Article  Google Scholar 

  4. Chen, X., Gong, Y., Zhang, D.H., You, Z.H., Li, Z.W.: DRMDA: deep representations-based miRNA–disease association prediction. J. Cell Mol. Med. 22, 472–485 (2018)

    Article  Google Scholar 

  5. Chen, X., et al.: A novel computational model based on super-disease and miRNA for potential miRNA–disease association prediction. Mol. BioSyst. 13, 1202–1212 (2017)

    Article  Google Scholar 

  6. Chen, X., Xie, D., Wang, L., Zhao, Q., You, Z.-H., Liu, H.: BNPMDA: bipartite network projection for MiRNA–disease association prediction. Bioinformatics 34, 3178–3186 (2018)

    Article  Google Scholar 

  7. Chen, X., et al.: WBSMDA: within and between score for MiRNA-disease association prediction. Sci. Rep. 6, 21106 (2016)

    Article  Google Scholar 

  8. Chen, X., Yan, C.C., Zhang, X., You, Z.-H., Huang, Y.-A., Yan, G.-Y.: HGIMDA: heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 7, 65257 (2016)

    Article  Google Scholar 

  9. Chen, X., Zhang, D.-H., You, Z.-H.: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med. 16, 348 (2018)

    Article  Google Scholar 

  10. Huang, Y.-A., Hu, P., Chan, K.C., You, Z.-H.: Graph convolution for predicting associations between miRNA and drug resistance. Bioinformatics 36, 851–858 (2020)

    Google Scholar 

  11. Bouba, I., Kang, Q., Luan, Y.S., Meng, J.: Predicting miRNA-lncRNA interactions and recognizing their regulatory roles in stress response of plants. Math. Biosci. 312, 67–76 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J.-Q., Rong, Z.-H., Chen, X., Yan, G.-Y., You, Z.-H.: MCMDA: matrix completion for MiRNA-disease association prediction. Oncotarget 8, 21187 (2017)

    Article  Google Scholar 

  13. Qu, J., et al.: In Silico prediction of small molecule-miRNA associations based on the HeteSim algorithm. Mol. Ther.-Nucleic Acids 14, 274–286 (2019)

    Article  Google Scholar 

  14. Sun, Y., Zhu, Z., You, Z.-H., Zeng, Z., Huang, Z.-A., Huang, Y.-A.: FMSM: a novel computational model for predicting potential miRNA biomarkers for various human diseases. BMC Syst. Biol. 12, 121 (2018)

    Article  Google Scholar 

  15. Wang, L., et al.: LMTRDA: using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput. Biol. 15, e1006865 (2019)

    Article  Google Scholar 

  16. You, Z.-H., et al.: PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction. PLoS Comput. Biol. 13, e1005455 (2017)

    Article  Google Scholar 

  17. You, Z.-H., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8, 85568 (2017)

    Article  Google Scholar 

  18. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: Dbmda: a unified embedding for sequence-based mirna similarity measure with applications to predict and validate mirna-disease associations. Mol. Ther.-Nucleic Acids 19, 602–611 (2020)

    Article  Google Scholar 

  19. Chen, X., Yan, C.C., Zhang, X., You, Z.-H.: Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief. Bioinf. 18, 558–576 (2017)

    Google Scholar 

  20. Chen, X., You, Z.-H., Yan, G.-Y., Gong, D.-W.: IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 7, 57919 (2016)

    Article  Google Scholar 

  21. Guo, Z.-H., You, Z.-H., Wang, Y.-B., Yi, H.-C., Chen, Z.-H.: A learning-based method for lncRNA-disease association identification combing similarity information and rotation forest. iScience 19, 786–795 (2019)

    Article  Google Scholar 

  22. Yi, H.-C., et al.: Learning distributed representations of RNA and protein sequences and its application for predicting lncRNA-protein interactions. Comput. Struct. Biotechnol. J. 18, 20–26 (2020)

    Article  Google Scholar 

  23. Huang, Y.-A., Chan, K.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA–miRNA interaction profiling. Bioinformatics 34, 812–819 (2018)

    Article  Google Scholar 

  24. Quinn, J.J., Chang, H.Y.: Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016)

    Article  Google Scholar 

  25. Jeggari, A., Marks, D.S., Larsson, E.: miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28, 2062–2063 (2012)

    Article  Google Scholar 

  26. Chen, X., Huang, Y.-A., Wang, X.-S., You, Z.-H., Chan, K.C.: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7, 45948 (2016)

    Article  Google Scholar 

  27. Hu, P., Huang, Y.-A., Chan, K.C., You, Z.-H.: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions. IEEE/ACM Trans. Comput. Biol. Bioinf. (2019)

    Google Scholar 

  28. Huang, Y.-A., Chen, X., You, Z.-H., Huang, D.-S., Chan, K.C.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7, 25902 (2016)

    Article  Google Scholar 

  29. Huang, Z.A., Huang, Y.A., You, Z.H., Zhu, Z., Sun, Y.: Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph. BMC Med. Genom. 11, 113 (2018)

    Article  Google Scholar 

  30. Huang, Z.-A., et al.: Predicting lncRNA-miRNA interaction via graph convolution auto-encoder. Front. Genet. 10, 758 (2019)

    Article  Google Scholar 

  31. Wang, M.-N., You, Z.-H., Li, L.-P., Wong, L., Chen, Z.-H., Gan, C.-Z.: GNMFLMI: graph regularized nonnegative matrix factorization for predicting LncRNA-MiRNA interactions. IEEE Access 8, 37578–37588 (2020)

    Article  Google Scholar 

  32. Wong, L., Huang, Y.A., You, Z.H., Chen, Z.H., Cao, M.Y.: LNRLMI: linear neighbour representation for predicting lncRNA-miRNA interactions. J. Cell. Mol. Med. 24, 79–87 (2020)

    Article  Google Scholar 

  33. Jalali, S., Bhartiya, D., Lalwani, M.K., Sivasubbu, S., Scaria, V.: Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One 8, e53823 (2013)

    Article  Google Scholar 

  34. Yoon, J.-H., Abdelmohsen, K., Gorospe, M.: Functional interactions among microRNAs and long noncoding RNAs. Seminar. Cell Dev. Biol. 34, 9–14 (2014)

    Article  Google Scholar 

  35. Veneziano, D., Marceca, G.P., Di Bella, S., Nigita, G., Distefano, R., Croce, C.M.: Investigating miRNA-lncRNA interactions: computational tools and resources. Methods Mol. Biol. 1970, 251–277 (2019)

    Article  Google Scholar 

  36. Hu, P., Huang, Y.-A., Chan, K.C.C., You, Z.-H.: Discovering an integrated network in heterogeneous data for predicting lncRNA-miRNA Interactions. In: Huang, D.-S., Bevilacqua, V., Premaratne, P., Gupta, P. (eds.) ICIC 2018. LNCS, vol. 10954, pp. 539–545. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95930-6_51

    Chapter  Google Scholar 

  37. Chen, X.: Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci. Rep. 5, 13186 (2015)

    Article  Google Scholar 

  38. Zhang, W., Tang, G., Wang, S., Chen, Y., Zhou, S., Li, X.: Sequence-derived linear neighborhood propagation method for predicting lncRNA-miRNA interactions. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 50–55. IEEE (2018)

    Google Scholar 

  39. Zhang, W., Qu, Q., Zhang, Y., Wang, W.: The linear neighborhood propagation method for predicting long non-coding RNA–protein interactions. Neurocomputing 273, 526–534 (2018)

    Article  Google Scholar 

  40. Guo, Z.-H., Yi, H.-C., You, Z.-H.: Construction and comprehensive analysis of a molecular association network via lncRNA–miRNA–disease–drug–protein graph. Cells 8, 866 (2019)

    Article  Google Scholar 

  41. Miao, Y.R., Liu, W., Zhang, Q., Guo, A.Y.: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs. Nucleic Acids Res. 46, D276–D280 (2018)

    Article  Google Scholar 

  42. Huang, Z., et al.: HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 47, D1013–D1017 (2019)

    Article  Google Scholar 

  43. Chou, C.H., et al.: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46, D296–D302 (2018)

    Article  Google Scholar 

  44. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41, D983–D986 (2012)

    Article  Google Scholar 

  45. Jiang, Q., et al.: LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res. 43, D193–D196 (2014)

    Article  Google Scholar 

  46. Piñero, J., et al.: DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. gkw943 (2016)

    Google Scholar 

  47. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2017)

    Article  Google Scholar 

  48. Davis, A.P., et al.: The comparative toxicogenomics database: update 2019. Nucleic Acids Res. 47, D948–D954 (2018)

    Article  Google Scholar 

  49. Szklarczyk, D., et al.: The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. gkw937 (2016)

    Google Scholar 

  50. Kozomara, A., Birgaoanu, M., Griffiths-Jones, S.: miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–D162 (2018)

    Article  Google Scholar 

  51. Fang, S., et al.: NONCODEV5: a comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46, D308–D314 (2017)

    Article  Google Scholar 

  52. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067-1077. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  53. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701-710. ACM (2014)

    Google Scholar 

  54. Kirk, J.M., et al.: Functional classification of long non-coding RNAs by k-mer content. Nat. Genet. 50, 1474 (2018)

    Article  Google Scholar 

  55. Amaratunga, D., Cabrera, J., Lee, Y.-S.: Enriched random forests. Bioinformatics 24, 2010–2014 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, BW., Zhang, P., You, ZH., Zhou, JR., Li, X. (2020). Predicting LncRNA-miRNA Interactions via Network Embedding with Integrated Structure and Attribute Information. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2020. Lecture Notes in Computer Science(), vol 12464. Springer, Cham. https://doi.org/10.1007/978-3-030-60802-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60802-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60801-9

  • Online ISBN: 978-3-030-60802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics