Abstract
An \(O(m+n)\) time algorithm is presented for counting the number of models of a two Conjunctive Normal Form Boolean Formula whose constrained graph is represented by a Series-Parallel graph, where n is the number of variables and m is the number of clauses. To the best of our knowledge, no linear time algorithm has been developed for counting in this kind of formulas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Winkler, P., Brifhtwell, G.: Counting linear extensions. Order, 8(e), 225–242 (1991)
López-Medina, M.A., Marcial-Romero, J.R., De Ita Luna, G., Montes-Venegas, H.A., Alejo, R.: A linear time algorithm for solving #2SAT on cactus formulas. CoRR, ams/1702.08581 (2017)
López, M.A., Marcial-Romero, J.R., De Ita, G., Moyao, Y.: A linear time algorithm for computing #2SAT for outerplanar 2-CNF formulas. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Olvera-López, J.A., Sarkar, S. (eds.) MCPR 2018. LNCS, vol. 10880, pp. 72–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92198-3_8
Wahlström, M.: A tighter bound for counting max-weight solutions to 2SAT instances. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 202–213. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_19
Schoenmakers, L.A.M.: A new algorithm for the recognition of series parallel graphs. CWI (Centre for Mathematics and Computer Science) (1995)
Eppstein, D.: Parallel recognition of series-parallel graphs. Inf. Comput. 98, 41–55 (1992)
Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. Assoc. Comput. Mach. 29(3), 623–641 (1982)
Gross, J.L., Yellen, J., Zhang, P.: Handbook of Graph Theory. Chapman & Hall/CRC, New York (2013)
Dieter, J.: Graphs, Networks and Algorithms., 4th edn. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32278-5
Jakoby, A., Liśkiewicz, M., Reischuk, R.: Space efficient algorithms for directed series-parallel graphs. J. Algorithms 60(2), 85–114 (2006)
Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_15
Marcial-Romero, J.R., De Ita Luna, G., Hernández, J.A., Valdovinos, R.M.: A parametric polynomial deterministic algorithm for #2SAT. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 202–213. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27060-9_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
López-Medina, M.A., Marcial-Romero, J.R., De Ita-Luna, G., Hernández, J.A. (2020). A Linear Time Algorithm for Counting #2SAT on Series-Parallel Formulas. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science(), vol 12468. Springer, Cham. https://doi.org/10.1007/978-3-030-60884-2_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-60884-2_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60883-5
Online ISBN: 978-3-030-60884-2
eBook Packages: Computer ScienceComputer Science (R0)