Skip to main content

A Multiresolution Machine Learning Technique to Identify Exoplanets

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2020)

Abstract

The discovery of planets outside our Solar System, called exoplanets, allows us to study the feasibility of life outside Earth. Different techniques such as the transit method have been employed to detect and identify exoplanets. The amount of time and effort required to perform such a task, hinder the manual examination of the existing data. Several machine learning approaches have been proposed to deal with this matter, though they are not yet unerring. Therefore, new models continue to be proposed. In this work, we present experimental results using the K-Nearest Neighbors, Random Forests, Convolutional Neural Network and the Ridge classifier models to identify simulated transit signals. Furthermore, we propose a methodology based on the Empirical Mode Decomposition and Ensemble Empirical Mode Decomposition techniques for light curve preprocessing. Following this methodology we prove that multiresolution analysis can be used to improve the robustness of the presented models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BATMAN Python package https://www.cfa.harvard.edu/~lkreidberg/batman/.

  2. 2.

    http://archive.stsci.edu/kepler.

  3. 3.

    EEMD Matlab function https://github.com/ron1818/PhD_code/tree/master/EMD_EEMD.

References

  1. Borucki, W.J., et al.: Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010)

    Article  Google Scholar 

  2. Basri, G., Borucki, W.J., Koch, D.: The Kepler mission: a wide-field transit search for terrestrial planets. New Astron. Rev. 49, 478–485 (2005)

    Article  Google Scholar 

  3. Auvergne, M., et al.: The CoRoT satellite in flight: description and performance. Astron. Astrophys. 506, 411–424 (2009)

    Article  Google Scholar 

  4. Ricker, G.R., et al.: Transiting exoplanet survey satellite (TESS). J. Astron. Telescop. Instrum. Syst. 1, 014003 (2015)

    Article  Google Scholar 

  5. Thompson, S.E., et al.: A machine learning technique to identify transit shaped signals. Astrophys. J. 812, 46 (2015)

    Article  Google Scholar 

  6. Catanzarite, J.H.: Autovetter planet candidate catalog for Q1–Q17 data release 24. Astronomy & Astrophysics (2015)

    Google Scholar 

  7. Coughlin, J.L., et al.: Planetary candidates observed by Kepler. VII. the first fully uniform catalog based on the entire 48-month data set (Q1–Q17 DR24). Astrophys. J. Supplement Ser. 224, 12 (2016)

    Google Scholar 

  8. Armstrong, D., et al.: Automatic vetting of planet candidates from ground-based surveys: machine learning with NGTS. Monthly Not. Roy. Astron. Soc. 478, 4225–4237 (2018)

    Article  Google Scholar 

  9. Schanche, N., et al.: Machine-learning approaches to exoplanet transit detection and candidate validation in wide-field ground-based surveys. Monthly Not. Roy. Astron. Soc. 483, 5534–5547 (2019)

    Article  Google Scholar 

  10. Dattilo, A., et al.: Identifying exoplanets with deep learning. II. Two new super-earths uncovered by a neural network in K2 data. Astron. J. 157, 169 (2019)

    Google Scholar 

  11. Shallue, C.J., Vanderburg, A.: Identifying exoplanets with deep learning: a five-planet resonant chain around Kepler-80 and an eighth planet around Kepler-90. Astron. J. 155, 94 (2018)

    Article  Google Scholar 

  12. Ansdell, M., et al.: Scientific domain knowledge improves exoplanet transit classification with deep learning. Astrophys. J. 869, L7 (2018)

    Article  Google Scholar 

  13. Yu, L., et al.: Identifying exoplanets with deep learning. III. Automated triage and vetting of TESS candidates. Astron. J. 158, 25 (2019)

    Google Scholar 

  14. Graps, A.: An introduction to wavelets. IEEE Comput. Sci. Eng. 2, 50–61 (1995)

    Article  Google Scholar 

  15. Bravo, J.P., Roque, S., Estrela, R., Leão, I.C., De Medeiros, J.R.: Wavelets: a powerful tool for studying rotation, activity, and pulsation in Kepler and CoRoT stellar light curves. Astron. Astrophys. 568, A34 (2014)

    Article  Google Scholar 

  16. Jara-Maldonado, M., Alarcon-Aquino, V., Rosas-Romero, R., Starostenko, O., Ramirez-Cortes, J.M.: Transiting exoplanet discovery using machine learning techniques: a survey. Earth Sci. Inf. 13(3), 573–600 (2020). https://doi.org/10.1007/s12145-020-00464-7

    Article  Google Scholar 

  17. Zeiler, A., et al.: Empirical mode decomposition - an introduction. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1–8 (2010)

    Google Scholar 

  18. Mandic, D.P., ur Rehman, N., Wu, Z., Huang, N.E.: Empirical Mode Decomposition-based time-frequency analysis of multivariate signals: the power of adaptive data analysis. IEEE Sig. Process. Mag. 30, 74–86 (2013)

    Google Scholar 

  19. Huang, N.E., Wu, Z.: A review on Hilbert-Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46, 1–23 (2008)

    Article  Google Scholar 

  20. Fang, K., et al.: Comparison of EMD and EEMD in rolling bearing fault signal analysis. In: 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5 (2018)

    Google Scholar 

  21. Fontugne, R., Borgnat, P., Flandrin, P.: Online empirical mode decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4306–4310 (2017)

    Google Scholar 

  22. Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4144–4147 (2011)

    Google Scholar 

  23. Daubechies, I., Lu, J., Wu, H.T.: Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)

    Article  MathSciNet  Google Scholar 

  24. Pearson, K.A., Palafox, L., Griffith, C.A.: Searching for exoplanets using artificial intelligence. Monthly Not. Roy. Astron. Soc. 474, 478–491 (2018)

    Article  Google Scholar 

  25. Tingley, B.: Improvements to existing transit detection algorithms and their comparison. Astron. Astrophys. 408, L5–L7 (2003)

    Article  Google Scholar 

  26. Mucherino, A., Papajorgji, P.J., Pardalos, P.M.: In: k-Nearest Neighbor Classification, pp. 83–106. Springer, New York (2009)

    Google Scholar 

  27. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, vol. 4, 4th edn. Academic Press Inc., USA (2008)

    MATH  Google Scholar 

  28. Haykin, S.S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, Upper Saddle River (2009)

    Google Scholar 

  29. Kreidberg, L.: batman: BAsic transit model cAlculatioN in python. Publ. Astron. Soc. Pacific 127, 1161–1165 (2015)

    Article  Google Scholar 

  30. Mandel, K., Agol, E.: Analytic light curves for planetary transit searches. Astrophys. J. 580, L171–L175 (2002)

    Article  Google Scholar 

  31. Committee, E.S.: Statistical significance and biological relevance. EFSA J. 9, 2372 (2011)

    Google Scholar 

  32. Rauer, H., et al.: The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Mexican National Council on Science and Technology (CONACyT) and the Universidad de las Americas Puebla (UDLAP) for their support through the doctoral scholarship program. This paper includes data collected by the Kepler mission and obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the Kepler mission is provided by the NASA Science Mission Directorate. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicente Alarcon-Aquino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jara-Maldonado, M., Alarcon-Aquino, V., Rosas-Romero, R. (2020). A Multiresolution Machine Learning Technique to Identify Exoplanets. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science(), vol 12468. Springer, Cham. https://doi.org/10.1007/978-3-030-60884-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60884-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60883-5

  • Online ISBN: 978-3-030-60884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics