Skip to main content

Outliers Detection in Multi-label Datasets

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12468))

Included in the following conference series:

  • 810 Accesses

Abstract

In many knowledge discovery applications, finding outliers, i.e. objects that behave in an unexpected way or have abnormal properties, is more interesting than finding inliers in a dataset. Outlier detection is important for many applications, including those related to intrusion detection, credit card fraud, and criminal activity in e-commerce. Several methods of outlier detection have been proposed, and even many of them from the perspective of Rough Set Theory, but at the moment none of them is specifically intended for multi-label datasets. In this paper, we propose a method that measures the degree of anomaly of an object in a multi-label dataset. This score or measure quantifies the degree of irregularity of an object with respect to the dataset. In addition, a method for generating anomalies in this type of datasets is proposed. From these synthetic datasets, the efficacy of the proposed method is proved. The results show the superiority of our proposal over other methods in the literature adapted to multi-label problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acuña, E., Rodriguez, C.: On Detection of Outliers and Their Effect in Supervised Classification, vol. 15. University of Puerto Rico at Mayaguez (2004)

    Google Scholar 

  2. Aggarwal, C.C.: Outlier analysis. Data Mining, pp. 237–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8_8

    Chapter  Google Scholar 

  3. Barnet, V., Lewis, T.: Outliers in Statistical Data (1994)

    Google Scholar 

  4. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  5. Bookstein, A., Kulyukin, V.A., Raita, T.: Generalized hamming distance. Inf. Retrieval 5(4), 353–375 (2002)

    Article  Google Scholar 

  6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  7. Charte, F., Charte, D., Rivera, A., del Jesus, M.J., Herrera, F.: R ultimate multilabel dataset repository. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds.) HAIS 2016. LNCS (LNAI), vol. 9648, pp. 487–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32034-2_41

    Chapter  Google Scholar 

  8. Chen, Y., Miao, D., Zhang, H.: Neighborhood outlier detection. Expert Syst. Appl. 37(12), 8745–8749 (2010)

    Article  Google Scholar 

  9. Gebhardt, J., Goldstein, M., Shafait, F., Dengel, A.: Document authentication using printing technique features and unsupervised anomaly detection. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 479–483. IEEE (2013)

    Google Scholar 

  10. Hawkins, D.M.: Identification of Outliers, vol. 11. Springer, Netherlands (1980). https://doi.org/10.1007/978-94-015-3994-4

    Book  MATH  Google Scholar 

  11. Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Multilabel classification. Multilabel Classification, pp. 17–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8_2

    Chapter  Google Scholar 

  12. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  13. Jiang, F., Chen, Y.-M.: Outlier detection based on granular computing and rough set theory. Appl. Intell. 42(2), 303–322 (2014). https://doi.org/10.1007/s10489-014-0591-4

    Article  MathSciNet  Google Scholar 

  14. Jiang, F., Sui, Y., Cao, C.: Outlier detection using rough set theory. In: Ślęzak, D., Yao, J.T., Peters, J.F., Ziarko, W., Hu, X. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3642, pp. 79–87. Springer, Heidelberg (2005). https://doi.org/10.1007/11548706_9

    Chapter  Google Scholar 

  15. Jiang, F., Sui, Y., Cao, C.: A rough set approach to outlier detection. Int. J. Gener. Syst. 37(5), 519–536 (2008)

    Article  Google Scholar 

  16. Johnson, T., Kwok, I., Ng, R.T.: Fast computation of 2-dimensional depth contours. In: KDD, pp. 224–228. Citeseer (1998)

    Google Scholar 

  17. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: algorithms and applications. VLDB J. 8(3–4), 237–253 (2000)

    Article  Google Scholar 

  18. Kovács, L., Vass, D., Vidács, A.: Improving quality of service parameter prediction with preliminary outlier detection and elimination. In: Proceedings of the Second International Workshop on Inter-domain Performance and Simulation (IPS 2004), Budapest, vol. 2004, pp. 194–199 (2004)

    Google Scholar 

  19. Lundin, E., Kvarnström, H., Jonsson, E.: A synthetic fraud data generation methodology. In: Deng, R., Bao, F., Zhou, J., Qing, S. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 265–277. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36159-6_23

    Chapter  Google Scholar 

  20. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  Google Scholar 

  21. Pereira, R.B., Plastino, A., Zadrozny, B., Merschmann, L.H.: Correlation analysis of performance measures for multi-label classification. Inf. Process. Manage. 54(3), 359–369 (2018)

    Article  Google Scholar 

  22. Porwal, U., Mukund, S.: Credit card fraud detection in e-commerce: an outlier detection approach. arXiv preprint arXiv:1811.02196 (2018)

  23. Ramakrishnan, J., Shaabani, E., Li, C., Sustik, M.A.: Anomaly detection for an e-commerce pricing system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1917–1926 (2019)

    Google Scholar 

  24. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection, vol. 589. Wiley, New York (2005)

    MATH  Google Scholar 

  25. Shaari, F., Bakar, A.A., Hamdan, A.R.: Outlier detection based on rough sets theory. Intell. Data Anal. 13(2), 191–206 (2009)

    Article  Google Scholar 

  26. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. Knowl. Data Eng. 12(2), 331–336 (2000)

    Article  Google Scholar 

  27. Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a java library for multi-label learning. J. Mach. Learn. Res. 12(Jul), 2411–2414 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Tsoumakas, G., Vlahavas, I.: Random k-labelsets: an ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5_38

    Chapter  Google Scholar 

  29. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6, 1–34 (1997)

    Article  MathSciNet  Google Scholar 

  30. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)

    Article  Google Scholar 

  31. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bello, M., Nápoles, G., Morera, R., Vanhoof, K., Bello, R. (2020). Outliers Detection in Multi-label Datasets. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science(), vol 12468. Springer, Cham. https://doi.org/10.1007/978-3-030-60884-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60884-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60883-5

  • Online ISBN: 978-3-030-60884-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics