Skip to main content

MASDES-DWMV: Model for Dynamic Ensemble Selection Based on Multiagent System and Dynamic Weighted Majority Voting

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2020)

Abstract

One of the main challenges of machine learning algorithms is to maximize the result and generalization. Thus, the committee machines, i.e., the combination of more than one learning machine (an approach also called in the literature by ensemble), together with agent theory, become a promising alternative in this challenge. In this sense, this research proposes a dynamic selection model of machine committees for classification problems based on the multi-agent system and the weighted majority voting dynamic. This model has an agent-based architecture, with its roles and behaviors modeled and described throughout the life cycle of the multiagent system. The steps of generalization, selection, combination, and decision are performed through the behavior and interaction of agents with the environment, in the exercise of their respective roles. In order to validate the model, experiments were performed on 20 datasets from four repositories and compared with seven state-of-the-art dynamic committee selection models. At the end, the results of these experiments are presented, compared and analyzed, in which the proposed model obtained considerable gains in relation to the other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albuquerque, R.A.S.: Seleção dinâmica de comitês de classificadores baseada em diversidade e acurácia para detecção de mudança de conceitos. Master’s thesis, Universidade Federal de Santa Catarina (2018)

    Google Scholar 

  2. Alcalá-Fdez, J.E.A.: Keel - knowledge extraction based on evolutionary learning. http://www.keel.es. Accessed 06 May 2019

  3. Almeida, P.R.L.D., Oliveira, L.S., BRITTO, A.D.S., Sabourin, R.: Handling concept drifts using a dynamic selection of classifiers. In: IEEE International Conference on Tools with Artificial Intelligence, pp. 989–995 (2016)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  5. Britto, A.S., Sabourin, R., Oliveira, L.E.S.: Dynamic selection of classifiers - a comprehensive review. Pattern Recogn. 47(11), 3665–3680 (2014)

    Article  Google Scholar 

  6. Calderón, J., López-Ortega, O., Castro-Espinoza, F.A.: A multi-agent ensemble of classifiers. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 499–508. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27060-9_41

    Chapter  Google Scholar 

  7. Chen, H., MA, S., Jiang, K.: Detecting and adapting to drifting concepts. In: Proceedings of 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2012, pp. 775–779 (2012)

    Google Scholar 

  8. Cruz, R.M.O., et al.: DESlib: a dynamic ensemble selection library in python. https://deslib.readthedocs.io/en/latest. Accessed 06 May 2019

  9. Cruz, R.M.O., et al.: Meta-des: a dynamic ensemble selection framework using meta-learning. Pattern Recogn. 48(5), 1925–1935 (2014)

    Article  Google Scholar 

  10. Cruz, R.M.O., et al.: Dynamic classifier selection: recent advances and perspectives. Inf. Fusion 41(41), 195–216 (2018)

    Article  Google Scholar 

  11. Dua, D., Graff, C.: UCI machine learning repository. http://archive.ics.uci.edu/ml. Accessed 30 July 2020

  12. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  13. Helmy, T., Al-Harthi, M.M., Faheem, M.T.: Adaptive ensemble and hybrid models for classification of bioinformatics datasets. Trans. Fuzzy Neural Netw. Bioinform. 3, 20–29 (2012)

    Google Scholar 

  14. Kim, H., Kim, H., Moon, H., Ahn, H.: A weight-adjusted voting algorithm for ensembles of classifiers. J. Korean Stat. Soc. 40(4), 437–449 (2011)

    Article  MathSciNet  Google Scholar 

  15. King, R.D., Feng, C., Sutherland, A.: Statlog: comparison of classification algorithms on large real-world problem. Appl. Artif. Intell. 9(5), 289–333 (1995)

    Article  Google Scholar 

  16. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

    MATH  Google Scholar 

  17. kuncheva, L.: Ludmila kuncheva - real medical data sets. http://pages.bangor.ac.uk/~mas00a/activities/realdata.htm. Accessed 06 May 2019

  18. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Hoboken (2004)

    Book  Google Scholar 

  19. Melo, L.: Python agent development framework. https://pade.readthedocs.io/pt_BR/latest. Accessed 30 July 2020

  20. Nilsson, N.J.: Learning Machines. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  21. Perrone, M.P., Cooper, L.: When networks disagree: ensemble methods for hybrid neural networks. In: How We Learn; How We Remember: Toward An Understanding of Brain and Neural Systems: Selected Papers of Leon N Cooper, pp. 342–358. World Scientific (1995)

    Google Scholar 

  22. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5, 197–227 (1990). https://doi.org/10.1007/bf00116037

    Article  Google Scholar 

  23. Uber Junior, A., de Freitas Filho, P.J., Silveira, R.A., Mueloschat, J.: iEnsemble2: committee machine model-based on heuristically-accelerated multiagent reinforcement learning. In: Barolli, L., Javaid, N., Ikeda, M., Takizawa, M. (eds.) CISIS 2018. AISC, vol. 772, pp. 363–374. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93659-8_32

    Chapter  Google Scholar 

  24. Junior, A.U., de Freitas Filho, P.J., Azambuja Silveira, R., Costa e Lima, M.D., Reitz, R.W.: iEnsemble: a framework for committee machine based on multiagent systems with reinforcement learning. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016. LNCS (LNAI), vol. 10062, pp. 65–80. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62428-0_6

    Chapter  Google Scholar 

  25. Wolpert, D.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

  26. Wozniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). https://doi.org/10.1016/j.inffus.2013.04.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Uber Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uber, A., Silveira, R.A., Filho, P.J.d., Uzinski, J.C., Bianchi, R.A.d.C. (2020). MASDES-DWMV: Model for Dynamic Ensemble Selection Based on Multiagent System and Dynamic Weighted Majority Voting. In: Martínez-Villaseñor, L., Herrera-Alcántara, O., Ponce, H., Castro-Espinoza, F.A. (eds) Advances in Computational Intelligence. MICAI 2020. Lecture Notes in Computer Science(), vol 12469. Springer, Cham. https://doi.org/10.1007/978-3-030-60887-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60887-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60886-6

  • Online ISBN: 978-3-030-60887-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics