Skip to main content

GTT: Guiding the Tensor Train Decomposition

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12440))

Included in the following conference series:

  • 1079 Accesses

Abstract

The demand for searching, querying multimedia data such as image, video and audio is omnipresent, how to effectively access data for various applications is a critical task. Nevertheless, these data usually are encoded as multi-dimensional arrays, or Tensor, and traditional data mining techniques might be limited due to the curse of dimensionality. Tensor decomposition is proposed to alleviate this issue, commonly used tensor decomposition algorithms include CP-decomposition (which seeks a diagonal core) and Tucker-decomposition (which seeks a dense core). Naturally, Tucker maintains more information, but due to the denseness of the core, it also is subject to exponential memory growth with the number of tensor modes. Tensor train (TT) decomposition addresses this problem by seeking a sequence of three-mode cores: but unfortunately, currently, there are no guidelines to select the decomposition sequence. In this paper, we propose a GTT method for guiding the tensor train in selecting the decomposition sequence. GTT leverages the data characteristics (including number of modes, length of the individual modes, density, distribution of mutual information, and distribution of entropy) as well as the target decomposition rank to pick a decomposition order that will preserve information. Experiments with various data sets demonstrate that GTT effectively guides the TT-decomposition process towards decomposition sequences that better preserve accuracy.

This work has been supported by: NSF grants #1633381, #1909555, #1629888, #2026860, #1827757, DOD grant W81XWH-19-1-0514, a DOE CYDRES grant, and a European Commission grant #690817. Experiments for the paper were conducted using NSF testbed: “Chameleon: A Large-Scale Re-configurable Experimental Environment for Cloud Research”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Alternative definitions of entropy may be used for dense tensors.

  2. 2.

    Note that the two mutual information based strategies, GTT-AMI and GTT-PMI, are hard to separate; since, as we see in Tables 4 and 5 in Sect. 6, GTT-PMI is overall more accurate among the two, we omit emphGTT-AMI in hybrid selection.

  3. 3.

    Our implementation and data sets can be found: https://shorturl.at/DMOSY.

References

  1. Batselier, K.: The trouble with tensor ring decompositions. CoRR abs/1811.03813 (2018)

    Google Scholar 

  2. Batselier, K., Yu, W., Daniel, L., Wong, N.: Computing low-rank approximations of large-scale matrices with the tensor network randomized SVD. SIAM J. Matrix Anal. Appl. 39(3), 1221–1244 (2018)

    Article  MathSciNet  Google Scholar 

  3. Bedo, M.V.N., Ciaccia, P., Martinenghi, D., de Oliveira, D.: A k-skyband approach for feature selection. In: SISAP 2019, Newark, NJ, USA, Proceedings (2019)

    Google Scholar 

  4. Candan, K.S., Sapino, M.L.: Data Management for Multimedia Retrieval. Cambridge University Press, USA (2010)

    Book  Google Scholar 

  5. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckart-young" decomposition. Psychometrika 35(3), 283–319 (1970). https://doi.org/10.1007/BF02310791

    Article  MATH  Google Scholar 

  6. Chen, Y., Jin, X., Kang, B., Feng, J., Yan, S.: Sharing residual units through collective tensor factorization to improve deep neural networks. In: IJCAI-18

    Google Scholar 

  7. Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature selection for clustering - A filter solution. In: 2002 IEEE ICDM, 2002, Proceedings, pp. 115–122 (2002)

    Google Scholar 

  8. Dash, M., Liu, H., Yao, J.: Dimensionality reduction of unsupervised data. In: IEEE International Conference on Tools with Artificial Intelligence (Nov 1997)

    Google Scholar 

  9. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  10. Harshman, R.: Foundations of the parafac procedure: Models and conditions for an “explanatory” multi-modal factor analysis. UCLA Working Papers in Phonetics, vol. 16 (1970)

    Google Scholar 

  11. Houle, M.E., Kashima, H., Nett, M.: Fast similarity computation in factorized tensors. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 226–239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32153-5_16

    Chapter  Google Scholar 

  12. Huang, S., Candan, K.S., Sapino, M.L.: Bicp: block-incremental CP decomposition with update sensitive refinement. In: CIKM 2016. ACM, New York (2016)

    Google Scholar 

  13. Imaizumi, M., Maehara, T., Hayashi, K.: On tensor train rank minimization: Statistical efficiency and scalable algorithm. In: NIPS, pp. 3930–3939 (2017)

    Google Scholar 

  14. Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: Haten2: Billion-scale tensor decompositions. In: 2015 IEEE 31st ICDE, pp. 1047–1058 (2015)

    Google Scholar 

  15. Kim, M., Candan, K.S.: Decomposition-by-normalization (DBN): leveraging approximate functional dependencies for efficient CP and tucker decompositions. Data Min. Knowl. Disc. 30(1), 1–46 (2016)

    Article  MathSciNet  Google Scholar 

  16. Ko, C.Y., Lin, R., Li, S., Wong, N.: Misc: Mixed strategies crowdsourcing. In: IJCAI-19, pp. 1394–1400 (2019). https://doi.org/10.24963/ijcai.2019/193

  17. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997). Relevance

    Google Scholar 

  18. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, L., Yu, W., Batselier, K.: Faster tensor train decomposition for sparse data. ArXiv (2019)

    Google Scholar 

  20. Mickelin, O., Karaman, S.: Tensor ring decomposition. CoRR abs/1807.02513 (2018)

    Google Scholar 

  21. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.: Tensorizing neural networks. In: NIPS 2015, pp. 442–450. MIT Press, Cambridge (2015)

    Google Scholar 

  22. Novikov, A., Trofimov, M., Oseledets, I.: Exponential Machines (2016). arXiv e-prints arXiv:1605.03795

  23. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286

    Article  MathSciNet  MATH  Google Scholar 

  24. Tucker, L.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  25. Yamaguchi, Y., Hayashi, K.: Tensor decomposition with missing indices. In: IJCAI 2017, pp. 3217–3223. AAAI Press (2017)

    Google Scholar 

  26. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: ICML 2003, vol. 2, pp. 856–863 (2003)

    Google Scholar 

  27. Zhao, Q., Zhou, G., Xie, S., Zhang, L., Cichocki, A.: Tensor ring decomposition. CoRR abs/1606.05535 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Lin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, ML., Candan, K.S., Sapino, M.L. (2020). GTT: Guiding the Tensor Train Decomposition. In: Satoh, S., et al. Similarity Search and Applications. SISAP 2020. Lecture Notes in Computer Science(), vol 12440. Springer, Cham. https://doi.org/10.1007/978-3-030-60936-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60936-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60935-1

  • Online ISBN: 978-3-030-60936-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics