Abstract
The analysis of similar trajectories in a network provides useful information for different applications. In this study, we are interested in algorithms to efficiently retrieve similar trajectories. Many studies have focused on retrieving similar trajectories by extracting the geometrical and geographical information of trajectories. We provide a similarity function by making use of both the temporal aspect of trajectories and the structure of the underlying network. We propose an approximation technique offering the top-k similar trajectories with respect to a query in a specified time interval in an efficient way. We also investigate how our idea can be applied to similar behavior of the tourists, so as to offer a high-quality prediction of their next movements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boukhechba, M., Bouzouane, A., Gaboury, S., Gouin-Vallerand, C., Giroux, S., Bouchard, B.: Prediction of next destinations from irregular patterns. J. Ambient Intell. Hum. Comput. 9, 1345–1357 (2017)
De Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects in networks. GeoInformatica 9(1), 33–60 (2005)
Grossi, R., Marino, A., Moghtasedi, S.: Finding structurally and temporally similar trajectories in graphs. In: 18th International Symposium on Experimental Algorithms (SEA 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)
Lucchese, C., Perego, R., Silvestri, F., Vahabi, H., Venturini, R.: How random walks can help tourism. In: Baeza-Yates, R., et al. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 195–206. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28997-2_17
Luo, W., Tan, H., Chen, L., Ni, L.M.: Finding time period-based most frequent path in big trajectory data. In: Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, pp. 713–724. ACM (2013)
Moghtasedi, S.: Time-based similar trajectories on graphs. In: ICTCS, pp. 82–86 (2018)
Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: WhereNext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 637–646. ACM (2009)
Muntean, C.I., Nardini, F.M., Silvestri, F., Baraglia, R.: On learning prediction models for tourists paths. ACM Trans. Intell. Syst. Technol. (TIST) 7(1), 8 (2015)
Popa, I.S., Zeitouni, K., Oria, V., Barth, D., Vial, S.: PariNet: a tunable access method for in-network trajectories. In: 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), pp. 177–188. IEEE (2010)
Shang, S., Chen, L., Wei, Z., Jensen, C.S., Zheng, K., Kalnis, P.: Trajectory similarity join in spatial networks. Proc. VLDB Endow. 10(11), 1178–1189 (2017)
Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: Proceedings of the 15th International Conference on Extending Database Technology, pp. 156–167 (2012)
Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2013). https://doi.org/10.1007/s00778-013-0331-0
Shima, M., Cristina Ioana, M., Franco Maria, N., Roberto, G., Andrea, M.: High-quality prediction of tourist movements using temporal trajectories in graphs (under submission)
Tiakas, E., Papadopoulos, A.N., Nanopoulos, A., Manolopoulos, Y., Stojanovic, D., Djordjevic-Kajan, S.: Trajectory similarity search in spatial networks, pp. 185–192. IEEE (2006)
Tiakas, E., Rafailidis, D.: Scalable trajectory similarity search based on locations in spatial networks. In: Bellatreche, L., Manolopoulos, Y. (eds.) MEDI 2015. LNCS, vol. 9344, pp. 213–224. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23781-7_17
Ying, H., et al.: Time-aware metric embedding with asymmetric projection for successive poi recommendation. World Wide Web 22(5), 2209–2224 (2019)
Zhu, J., Jiang, W., Liu, A., Liu, G., Zhao, L.: Effective and efficient trajectory outlier detection based on time-dependent popular route. World Wide Web 20(1), 111–134 (2016). https://doi.org/10.1007/s11280-016-0400-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Moghtasedi, S. (2020). Temporal Similarity of Trajectories in Graphs. In: Satoh, S., et al. Similarity Search and Applications. SISAP 2020. Lecture Notes in Computer Science(), vol 12440. Springer, Cham. https://doi.org/10.1007/978-3-030-60936-8_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-60936-8_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60935-1
Online ISBN: 978-3-030-60936-8
eBook Packages: Computer ScienceComputer Science (R0)