Skip to main content

S-NET: A Confusion Based Countermeasure Against Power Attacks for SBOX

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12471))

Included in the following conference series:

Abstract

Side channel attacks are recognized as one of the most powerful attacks due to their ability to extract secret key information by analyzing the unintended leakage generated during operation. This makes them highly attractive for attackers. The current countermeasures focus on either randomizing the leakage by obfuscating the power consumption of all operations or blinding the leakage by maintaining a similar power consumption for all operations. Although these techniques help hiding the power-leakage correlation, they do not remove the correlation completely. This paper proposes a new countermeasure type, referred to as confusion, that aims to break the linear correlation between the leakage model and the power consumption and hence confuses attackers. It realizes this by replacing the traditional SBOX implementation with a neural network referred to as S-NET. As a case study, the security of Advanced Encryption Standard (AES) software implementations with both conventional SBOX and S-NET are evaluated. Based on our experimental results, S-NET leaks no information and is resilient against popular attacks such as differential and correlation power analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIST: Announcing the advanced encryption standard (AES). Fed. Inf. Process. Stan. Publ. 197 3 (2001)

    Google Scholar 

  2. Leech, D.P., et al.: The economic impacts of the advanced encryption standard, 1996–2017. NIST (2018)

    Google Scholar 

  3. IBM: 2019 Cost of a Data Breach Report: IBM Security (2019).https://databreachcalculator.mybluemix.net/. Accessed 23 Sept 2019

  4. Ors, S.B., et al.: Power analysis attack on an ASIC AES implementation. In: ITCC (2004)

    Google Scholar 

  5. Chari, S., et al.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  6. Kocher, P., et al.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  7. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_11

    Chapter  Google Scholar 

  8. Coron, J.S., et al.: Higher-order side channel security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

    Chapter  Google Scholar 

  9. Durvaux, F., et al.: Efficient removal of random delays from embedded software implementations using hidden Markov models. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37288-9_9

    Chapter  Google Scholar 

  10. Luo, P., et al.: Towards secure cryptographic software implementation against side-channel power analysis attacks. In: ASAP (2015)

    Google Scholar 

  11. Durvaux, F., et al.: Cryptanalysis of the CHES 2009/2010 random delay countermeasure. IACR Cryptol. ePrint Arch. 2012, 38 (2012)

    Google Scholar 

  12. Veyrat-Charvillon, N., et al.: Shuffling against Side-channel attacks: a comprehensive study with cautionary note. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_44

    Chapter  Google Scholar 

  13. Tiri, K., et al.: A dynamic and differential CMOS logic with signal independent power consumption to withstand differential power analysis on smart cards. In: 28th European Solid-State Circuits Conference (2002)

    Google Scholar 

  14. Ambrose, J.A., et al.: MUTE-AES: a multiprocessor architecture to prevent power analysis based side channel attack of the AES algorithm. In: ICCD (2008)

    Google Scholar 

  15. Fang, X., et al.: Leakage evaluation on power balance countermeasure against side-channel attack on FPGAs. In: IEEE HPEC (2015)

    Google Scholar 

  16. Shannon, C.E.: Communication theory of secrecy systems. The Bell Syst. Tech. J. 25(4), 656–715 (1949)

    Article  MathSciNet  Google Scholar 

  17. Zhou, Y., Feng, D.: Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. http://eprint.iacr.org/2005/388. Accessed 23 Sept 2019

  18. Brier, E., et al.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  19. Chari, S., et al.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  20. Maghrebi, H., et al.: Breaking cryptographic implementations using deep learning techniques. In: IACR Cryptology ePrint Archive (2016)

    Google Scholar 

  21. Hassoun, M.H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  22. Csáji, B.C.: Approximation with artificial neural networks. Master’s thesis, Eötvös Loránd University, Hungary (2001)

    Google Scholar 

  23. Standaert, F.-X.: Introduction to Side-Channel Attacks. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-71829-3_2

    Book  MATH  Google Scholar 

  24. N. T. Inc: Chipwhisperer-Lite two part board. http://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/. Accessed 31 Jan 2020

  25. Becker, G., et al.: Test vector leakage assessment ( TVLA ) methodology in practice (2011). https://pdfs.semanticscholar.org/. Accessed 23 Sept 2019

  26. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 222–235. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24660-2_18

    Chapter  Google Scholar 

  27. N. technology inc: Measuring SNR of Target. https://chipwhisperer.readthedocs.io/en/latest/tutorials/pa_intro_3-openadc-cwlitearm.html/. Accessed 13 May 2020

  28. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_28

    Chapter  Google Scholar 

  29. Sun, J.: CMOS and memristor technologies for neuromorphic computing applications. Technical report, University of California at Berkeley (2015)

    Google Scholar 

Download references

Acknowledgments

This work was labelled by the EUREKA cluster PENTA and funded by Dutch authorities under grant agreement PENTA-2018e-17004-SunRISE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Aljuffri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aljuffri, A., Venkatachalam, P., Reinbrecht, C., Hamdioui, S., Taouil, M. (2020). S-NET: A Confusion Based Countermeasure Against Power Attacks for SBOX. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2020. Lecture Notes in Computer Science(), vol 12471. Springer, Cham. https://doi.org/10.1007/978-3-030-60939-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60939-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60938-2

  • Online ISBN: 978-3-030-60939-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics