Skip to main content

Risk and Architecture Factors in Digital Exposure Notification

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12471))

Included in the following conference series:

Abstract

To effectively trace the infection spread in a pandemic, a large number of manual contact tracers are required to reach out to all possible contacts of infected users. Exposure notification, a.k.a. digital contact tracing, can supplement manual contact tracing to ease the burden on manual tracers and to digitally obtain accurate contact information. We study how risk emerges in security, privacy, architecture, and technology aspects of exposure notification systems. We provide potential overhead in using Bluetooth-based systems and discuss the architectural support required for other types of systems, and we wrap up with a discussion on architecture aspects to support these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aislelabs. https://www.aislelabs.com/

  2. Apple iPhone 5S: technical specification. https://www.gsmarena.com/

  3. iBeacon and Battery Drain on Phones: a technical report (2014). https://www.aislelabs.com/reports/ibeacon-battery-phones/

  4. iBeacon Battery Drain on Apple vs Android: a technical report (2014). https://www.aislelabs.com/reports/ibeacon-battery-drain-iphones/

  5. The Hitchhikers Guide to iBeacon Hardware: a comprehensive report by Aislelabs (2015). https://www.aislelabs.com/reports/beacon-guide/

  6. CoEpi: Community epidemiology in action (2020). https://github.com/Co-Epi/

  7. Covid Watch: slowing the spread of infectious diseases using crowdsourced data (2020). https://github.com/covid19risk

  8. CovidSafe (2020). https://github.com/CovidSafe

  9. Decentralized privacy-preserving proximity tracing (2020). https://github.com/DP-3T/documents

  10. MIT PrivateKit (2020). https://privatekit.mit.edu/

  11. PACT: private automated contact tracing (2020). https://pact.mit.edu/

  12. PrivateKit: SafePaths (2020). https://privatekit.mit.edu/

  13. ROBust and privacy-presERving proximity tracing protocol (2020). https://github.com/ROBERT-proximity-tracing/documents

  14. Safetrace API: Privacy-first contact tracing (2020). https://safetraceapi.org/

  15. WeTrace, a privacy focused mobile COVID-19 tracing App (2020). https://github.com/WeTrace-ch/WeTrace

  16. Alderson, E.: Aarogya Setu: The story of a failure (2020). https://medium.com/@fs0c131y/aarogya-setu-the-story-of-a-failure-3a190a18e34

  17. Altuwaiyan, T., Hadian, M., Liang, X.: EPIC: efficient privacy-preserving contact tracing for infection detection. In: 2018 IEEE International Conference on Communications, pp. 1–6. IEEE (2018). https://doi.org/10.1109/ICC.2018.8422886

  18. Bay, J., et al.: BlueTrace: a privacy-preserving protocol for community-driven contact tracing across borders (2020). https://bluetrace.io/

  19. Becker, J.K., Li, D., Starobinski, D.: Tracking anonymized bluetooth devices. PoPETs 2019(3), 50–65 (2019). https://doi.org/10.2478/popets-2019-0036

  20. Bell, J., Butler, D., Hicks, C., Crowcroft, J.: TraceSecure: towards privacy preserving contact tracing. CoRR abs/2004.04059 (2020). https://arxiv.org/abs/2004.04059

  21. Berke, A., Bakker, M., Vepakomma, P., Larson, K., Pentland, A.S.: Assessing disease exposure risk with location data: a proposal for cryptographic preservation of privacy (2020)

    Google Scholar 

  22. Cao, X., Moore, C., O’Neill, M., Hanley, N., O’Sullivan, E.: High-speed fully homomorphic encryption over the integers. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 169–180. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_14

    Chapter  Google Scholar 

  23. Chan, J., et al.: PACT: privacy sensitive protocols and mechanisms for mobile contact tracing. CoRR abs/2004.03544 (2020). https://arxiv.org/abs/2004.03544

  24. Google, Apple: privacy-preserving contact tracing (2020). https://www.apple.com/covid19/contacttracing/

  25. Government, S.: TraceTogether (2020). https://www.tracetogether.gov.sg/

  26. Group, T.C.: TPM2.0 mobile reference architecture, December 2014. https://trustedcomputinggroup.org/resource/tpm-2-0-mobile-reference-architecture-specification/

  27. Gvili, Y.: Security analysis of the COVID-19 contact tracing specifications by Apple Inc. and Google Inc., Cryptology ePrint Archive, Report 2020/428 (2020). https://eprint.iacr.org/2020/428

  28. Israel Ministry of Health, I.M.: Hamagen: COVID-19 exposure prevention app (2020). https://github.com/MohGovIL/hamagen-react-native

  29. North Macedonia Ministry of Health, N.M.M.: StopKorona! (2020)

    Google Scholar 

  30. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Garbled circuits for leakage-resilience: hardware implementation and evaluation of one-time programs. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 383–397. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_26

    Chapter  Google Scholar 

  31. Jayet-Griffon, C., Cornelie, M., Maistri, P., Elbaz-Vincent, P., Leveugle, R.: Polynomial multipliers for fully homomorphic encryption on FPGA. In: International Conference on ReConFigurable Computing and FPGAs, ReConFig, pp. 1–6. IEEE (2015). https://doi.org/10.1109/ReConFig.2015.7393335

  32. National Informatics Centre, I.: Arogya Setu (2020). https://www.mygov.in/aarogya-setu-app/

  33. Organization, W.H.: What is contact tracing and why is it important? (May 2017)

    Google Scholar 

  34. Ministry of Digital Affairs of Polland, M.: ProteGo Safe (2020)

    Google Scholar 

  35. Norwegian Institute of Public Health, N.I.: Smittestopp app (2020)

    Google Scholar 

  36. Reed, H.: Digital contact tracing and alerting vs exposure alerting (22 Apr 2020). https://harper.blog/2020/04/22/digital-contact-tracing-and-alerting-vs-exposure-alerting/

  37. Reichert, L., Brack, S., Scheuermann, B.: Privacy-preserving contact tracing of COVID-19 patients. Cryptology ePrint Archive, Report 2020/375 (2020). https://eprint.iacr.org/2020/375

  38. Riazi, M.S., Laine, K., Pelton, B., Dai, W.: HEAX: an architecture for computing on encrypted data. In: ASPLOS 2020: Architectural Support for Programming Languages and Operating Systems, pp. 1295–1309. ACM (2020). https://doi.org/10.1145/3373376.3378523

  39. Saputro, N., Akkaya, K.: Performance evaluation of smart grid data aggregation via homomorphic encryption. In: 2012 IEEE Wireless Communications and Networking Conference, pp. 2945–2950. https://doi.org/10.1109/WCNC.2012.6214307

  40. Seri, B., Vishnepolsky, G.: BlueBorne (2017)

    Google Scholar 

  41. Seri, B., Vishnepolsky, G., Zusman, D.: BleedingBit: the hidden attack surface against BLE chips (2019). https://info.armis.com/rs/645-PDC-047/images/Armis-BLEEDINGBIT-Technical-White-Paper-WP.pdf

  42. Tang, Q.: Privacy-preserving contact tracing: current solutions and open questions. Cryptology ePrint Archive, Report 2020/426 (2020). https://eprint.iacr.org/2020/426

  43. Tjell, K., Gundersen, J.S., Wisniewski, R.: Privacy preservation in epidemic data collection. CoRR abs/2004.14759 (2020). https://arxiv.org/abs/2004.14759

  44. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: lightweight contact tracing with strong privacy. CoRR abs/2004.13293 (2020). https://arxiv.org/abs/2004.13293

  45. Vaudenay, S.: Analysis of DP3T. Cryptology ePrint Archive, Report 2020/399 (2020). https://eprint.iacr.org/2020/399

  46. Vaudenay, S.: Centralized or decentralized? the contact tracing dilemma. Cryptology ePrint Archive, Report 2020/531 (2020). https://eprint.iacr.org/2020/531

  47. Wang, W., Huang, X.: FPGA implementation of a large-number multiplier for fully homomorphic encryption. In: 2013 IEEE International Symposium on Circuits and Systems, pp. 2589–2592. https://doi.org/10.1109/ISCAS.2013.6572408

Download references

Acknowledgements

This work was supported in part by NSF grant 1704176 and NSF grant 2028190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archanaa S. Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krishnan, A.S., Yang, Y., Schaumont, P. (2020). Risk and Architecture Factors in Digital Exposure Notification. In: Orailoglu, A., Jung, M., Reichenbach, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2020. Lecture Notes in Computer Science(), vol 12471. Springer, Cham. https://doi.org/10.1007/978-3-030-60939-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60939-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60938-2

  • Online ISBN: 978-3-030-60939-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics