Abstract
The technological improvements within the Intelligent Transportation Systems, based on advanced Information and Communication Technologies (like Smartphones, GPS handhelds, etc.), has led to a significant increase in the availability of datasets representing mobility phenomena, with high spatial and temporal resolution. Especially in the urban scenario, these datasets can enable the development of “Smart Cities”. Nevertheless, these massive amounts of data may result challenging to handle, putting in crisis traditional Spatial Database Management Systems. In this paper we report on some experiments we performed to handle a massive dataset of about seven years of parking availability data, collected from the municipality of Melbourne (AU), being about 40 GB. In particular, we describe the results of an empirical comparison of the retrieval performances offered by three different off-the-shelf settings to manage these data, namely a combination of PostgreSQL + PostGIS with standard indexing, a clustered setup of PostgreSQL + PostGIS, and a combination of PostgreSQL + PostGIS + Timescale, a storage extension specialized in handling temporal data. Results show that the standard indexing is by far outperformed by the two other solutions, which anyhow have different trade-offs. Thanks to this experience, other researchers facing the problems of handing these kinds of massive mobility dataset might be facilitated in their task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through Internet of Things. IEEE Internet Things J. 1(2), 112–121 (2014)
Sun, Y., Song, H., Jara, A.J., Bie, R.: Internet of Things and big data analytics for smart and connected communities. IEEE Access 4, 766–773 (2016)
Bélissent, J., et al.: Getting clever about smart cities: new opportunities require new business models, Cambridge, Massachusetts, USA, vol. 193, pp. 244–277 (2010)
Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)
Bock, F., Di Martino, S., Origlia, A.: Smart parking: using a crowd of taxis to sense on-street parking space availability. IEEE Trans. Intell. Transp. Syst. 21(2), 496–508 (2020)
Kwoczek, S., Di Martino, S., Nejdl, W.: Stuck around the stadium? An approach to identify road segments affected by planned special events. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1255–1260. IEEE (2015)
Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)
Bock, F., Martino, S.D., Sester, M.: What are the potentialities of crowdsourcing for dynamic maps of on-street parking spaces? In: Proceedings of the 9th ACM SIGSPATIAL International Workshop on Computational Transportation Science, pp. 19–24 (2016)
Chen, M., Mao, S., Zhang, Y., Leung, V.C.M.: Big Data: Related Technologies, Challenges and Future Prospects. SCS. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06245-7
Kitchin, R.: The real-time city? Big data and smart urbanism. GeoJournal 79(1), 1–14 (2014)
Chen, W., Guo, F., Wang, F.Y.: A survey of traffic data visualization. IEEE Trans. Intell. Transp. Syst. 16(6), 2970–2984 (2015)
Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of New York city taxi trips. IEEE Trans. Visual. Comput. Graphics 19(12), 2149–2158 (2013)
Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T.: Exploratory spatio-temporal data mining and visualization. J. Vis. Lang. Comput. 18(3), 255–279 (2007)
Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: a survey. IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)
Di Martino, S., Fiadone, L., Peron, A., Riccabone, A., Vitale, V.N.: Industrial Internet of Things: persistence for time series with NoSQL databases. In: 2019 IEEE 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 340–345. IEEE (2019)
Robino, C., Di Rocco, L., Di Martino, S., Guerrini, G., Bertolotto, M.: A visual analytics GUI for multigranular spatio-temporal exploration and comparison of open mobility data. In: 22nd International Conference Information Visualisation (IV), pp. 309–314. IEEE (2018)
Kwoczek, S., Di Martino, S., Rustemeyer, T., Nejdl, W.: An architecture to process massive vehicular traffic data. In: 2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 515–520. IEEE (2015)
Makris, A., Tserpes, K., Anagnostopoulos, D., Nikolaidou, M., de Macedo, J.A.F.: Database system comparison based on spatiotemporal functionality. In: Proceedings of the 23rd International Database Applications and Engineering Symposium, p. 21. ACM (2019)
PostgreSQL: PostgreSQL The Most Advanced Open-source Object Relational Database
PostGIS: PostGIS spatial database extender for PostgreSQL (2019). https://postgis.net/docs/. Accessed 15 December 2019
Timescale: Timescale simple, scalable SQL for time-series and IoT (2019). https://www.timescale.com/. Accessed 15 December 2019
SFMTA: SFPark: Putting Theory Into Practice. Pilot project summary and lessons learned (2014). Accessed 24 June 2016
Bock, F., Di Martino, S.: On-street parking availability data in San Francisco, from stationary sensors and high-mileage probe vehicles. Data Brief 25, 104039 (2019)
Government, V.S.: City of Melbourne. Melbourne parking sensor (2014). https://www.melbourne.vic.gov.au/SiteCollectionDocuments/parking-technology-map.pdf. Accessed 15 December 2019
Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 29 (2015)
Naqvi, S.N.Z., Yfantidou, S., Zimányi, E.:Time series databases and influxdb. Studienarbeit, Université Libre de Bruxelles (2017)
Kaur, K., Rani, R.: Managing data in healthcare information systems: many models, one solution. Computer 48(3), 52–59 (2015)
Liu, X., Nielsen, P.S.: A hybrid ICT-solution for smart meter data analytics. Energy 115, 1710–1722 (2016)
Gilbert, S., Lynch, N.: Perspectives on the CAP theorem. Computer 45(2), 30–36 (2012)
Zhang, L., Yi, J.: Management methods of spatial data based on PostGIS. In: 2010 Second Pacific-Asia Conference on Circuits, Communications and System, vol. 1, pp. 410–413. IEEE (2010)
Consortium, O.G., et al.: OpenGIS implementation specification for geographic information-simple feature access-part 2: SQL option. OpenGIS Implementation Standard (2010)
Guttman, A.: R-trees: a dynamic index structure for spatial searching, vol. 14. ACM (1984)
Papadias, D., Tao, Y., Kanis, P., Zhang, J.: Indexing spatio-temporal data warehouses. In: Proceedings 18th International Conference on Data Engineering, pp. 166–175. IEEE (2002)
Lehman, P.L., et al.: Efficient locking for concurrent operations on B-trees. ACM Trans. Database Syst. (TODS) 6(4), 650–670 (1981)
Hellerstein, J.M., Naughton, J.F., Pfeffer, A.: Generalized search trees for database systems, September 1995
Michel, O., Sonchack, J., Keller, E., Smith, J.M.: PIQ: Persistent interactive queries for network security analytics. In: Proceedings of the ACM International Workshop on Security in Software Defined Networks and Network Function Virtualization, pp. 17–22. ACM (2019)
John, A., Sugumaran, M., Rajesh, R.: Indexing and query processing techniques in spatio-temporal data. ICTACT J. Soft Comput. 6(3), 1198 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Di Martino, S., Vitale, V.N. (2020). Massive Spatio-Temporal Mobility Data: An Empirical Experience on Data Management Techniques. In: Di Martino, S., Fang, Z., Li, KJ. (eds) Web and Wireless Geographical Information Systems. W2GIS 2020. Lecture Notes in Computer Science(), vol 12473. Springer, Cham. https://doi.org/10.1007/978-3-030-60952-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-60952-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60951-1
Online ISBN: 978-3-030-60952-8
eBook Packages: Computer ScienceComputer Science (R0)