Skip to main content

Scalable In-Memory Graph Pattern Matching on Symmetric Multiprocessor Systems

  • Conference paper
  • First Online:
Software Foundations for Data Interoperability and Large Scale Graph Data Analytics (SFDI 2020, LSGDA 2020)

Abstract

Graph-structured data can be found in nearly every aspect of today’s world which contributes to an increasing importance of this data structure for storing and processing data. From a processing perspective, finding comprehensive patterns in graph-structured data is a processing primitive in a variety of applications, such as fraud detection, biological engineering or social graph analytics. On the hardware side, multiprocessor systems—consisting of multiple processors in a single scale-up server—are the next important wave on top of multi-core systems. In particular, symmetric multiprocessor systems (SMP) are characterized by the fact, that each processor has the same architecture, e.g., every processor is a multi-core and all multiprocessors share a common and huge main memory space. Moreover, large SMPs will feature a non-uniform memory access (NUMA), whose impact on the design of efficient data processing concepts is considerable. In this paper, we give an overview of NeMeSys, our system for scalable near-memory graph pattern matching (GPM) on SMPs. NeMeSys is built on a synthesis of well-known concepts of database systems including a set of graph-tailored and hardware-oriented optimization techniques for scalable GPM on SMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angles, R.: A comparison of current graph database models. In: ICDE Workshop, pp. 171–177 (2012)

    Google Scholar 

  2. Appuswamy, R., Anadiotis, A., Porobic, D., Iman, M., Ailamaki, A.: Analyzing the impact of system architecture on the scalability of OLTP engines for high-contention workloads. PVLDB 11(2), 121–134 (2017)

    Google Scholar 

  3. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.: gmark: schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data Eng. 29(4), 856–869 (2017)

    Article  Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  Google Scholar 

  6. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA database: data management for modern business applications. SIGMOD Rec. 40(4), 45–51 (2011)

    Article  Google Scholar 

  7. Hey, T., Tansley, S., Tolle, K.M. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research (2009)

    Google Scholar 

  8. Hyafil, L., Rivest, R.L.: Graph partitioning and constructing optimal decision trees are polynomial complete problems. IRIA, Laboratoire de Recherche en Informatique et Automatique (1973)

    Google Scholar 

  9. Karypis, G., Kumar, V.: MeTis: unstructured graph partitioning and sparse matrix ordering system, Version 5.1 (2013). http://www.cs.umn.edu/~metis

  10. Kiefer, T., Schlegel, B., Lehner, W.: Experimental evaluation of NUMA effects on database management systems. In: BTW, pp. 185–204 (2013)

    Google Scholar 

  11. Kissinger, T., Kiefer, T., Schlegel, B., Habich, D., Molka, D., Lehner, W.: ERIS: A numa-aware in-memory storage engine for analytical workload. In: ADMS@VLDB, pp. 74–85 (2014)

    Google Scholar 

  12. Krause, A., Ebner, F., Habich, D., Lehner, W.: Trading memory versus workload overhead in graph pattern matching on multiprocessor systems. In: DATA, pp. 400–407 (2019)

    Google Scholar 

  13. Krause, A., Kissinger, T., Habich, D., Lehner, W.: Nemesys - A showcase of data oriented near memory graph processing. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30–July 5, pp. 1945–1948 (2019)

    Google Scholar 

  14. Krause, A., Kissinger, T., Habich, D., Voigt, H., Lehner, W.: Partitioning strategy selection for in-memory graph pattern matching on multiprocessor systems. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 149–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_11

    Chapter  Google Scholar 

  15. Krause, A., Ungethüm, A., Kissinger, T., Habich, D., Lehner, W.: Asynchronous graph pattern matching on multiprocessor systems. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A., Gamper, J., Wrembel, R., Darmont, J., Rizzi, S. (eds.) ADBIS 2017. CCIS, vol. 767, pp. 45–53. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67162-8_6

    Chapter  Google Scholar 

  16. Leis, V., Boncz, P.A., Kemper, A., Neumann, T.: Morsel-driven parallelism: a numa-aware query evaluation framework for the many-core age. In: SIGMOD, pp. 743–754 (2014)

    Google Scholar 

  17. Lu, Y., Cheng, J., Yan, D., Wu, H.: Large-scale distributed graph computing systems: an experimental evaluation. PVLDB 8(3), 281–292 (2014)

    Google Scholar 

  18. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-centric frameworks for large-scale distributed graph processing. ACM Comput. Surv. 48(2), 25:1–25:39 (2015)

    Article  Google Scholar 

  19. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph analytics. In: SOSP, pp. 456–471 (2013)

    Google Scholar 

  20. Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. 28(20), 4021–4028 (2000)

    Article  Google Scholar 

  21. Otte, E., Rousseau, R.: Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci. 28(6), 441–453 (2002)

    Article  Google Scholar 

  22. Pandis, I., Johnson, R., Hardavellas, N., Ailamaki, A.: Data-oriented transaction execution. PVLDB 3(1), 928–939 (2010)

    Google Scholar 

  23. Pandit, S., Chau, D.H., Wang, S., Faloutsos, C.: NetProbe: a fast and scalable system for fraud detection in online auction networks. In: WWW, pp. 201–210 (2007)

    Google Scholar 

  24. Rother, C., Kolmogorov, V., Blake, A.: “grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  25. Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity of large graphs and surprising challenges of graph processing. PVLDB 11(4), 420–431 (2017)

    Google Scholar 

  26. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared memory. In: PPoPP, pp. 135–146 (2013)

    Google Scholar 

  27. Tas, M.K., Kaya, K., Saule, E.: Greed is good: optimistic algorithms for bipartite-graph partial coloring on multicore architectures. CoRR abs/1701.02628 (2017)

    Google Scholar 

  28. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. PVLDB 1(1), 1008–1019 (2008)

    Google Scholar 

  29. Wood, P.T.: Query languages for graph databases. SIGMOD Rec. 41(1), 50–60 (2012)

    Article  Google Scholar 

  30. Yan, D., Cheng, J., Lu, Y., Ng, W.: Effective techniques for message reduction and load balancing in distributed graph computation. In: WWW, pp. 1307–1317 (2015)

    Google Scholar 

  31. Zhang, K., Chen, R., Chen, H.: NUMA-aware graph-structured analytics. In: PPoPP, pp. 183–193 (2015)

    Google Scholar 

Download references

Acknowledgment

This work was partly funded by the German Research Foundation (DFG) within the CRC 912 (HAEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krause, A., Habich, D., Lehner, W. (2020). Scalable In-Memory Graph Pattern Matching on Symmetric Multiprocessor Systems. In: Qin, L., et al. Software Foundations for Data Interoperability and Large Scale Graph Data Analytics. SFDI LSGDA 2020 2020. Communications in Computer and Information Science, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-61133-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61133-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61132-3

  • Online ISBN: 978-3-030-61133-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics