Abstract
Simulation modeling as a research field is engaging and multidisciplinary, drawing on a wide range of techniques and tools. It has reached its 60th anniversary amassing to an enormous corpus of literature. To date, many studies explored its advancements in specific disciplines. This paper aims to present a more structured and cross-disciplinary approach by identifying trends and extracting patterns from text files using text mining techniques. For that purpose, abstracts from over 5,000 papers were downloaded from the WoS database and analyzed. The results are complemented and visualized through the process of science mapping and positioned to existing frameworks (Plan-Do-Check-Act and Bloom’s taxonomy in particular). The source with the most journal papers related to simulation modeling has been Ecological modelling; however, recent research focus has shifted to healthcare issues. Overall, the results confirm the relevancy of the simulation modeling field and acknowledge the trend among research papers towards the highest cognitive level of Bloom’s taxonomy – knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Humphreys, A., Jen-Hui Wang, R.: Automated text analysis for consumer research. J. Consum. Res. 44(6), 1274–1306 (2018)
Justicia De La Torre, C., Sánchez, D., Blanco, I., Martín-Bautista, M.J.: Text mining: techniques, applications, and challenges. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 26(4), 553–582 (2018)
Taylor, S.J.E., Eldabi, T., Riley, G., Paul, R.J., Pidd, M.: Simulation modelling is 50! Do we need a reality check? J. Oper. Res. Soc. 60(1), 69–82 (2009)
Tocher, K., Owen, D.: The automatic programming of simulation. In: Proceedings of the Second International Conference on Operational Research, pp. 58–60 (1960)
García-García, J.A., Enríquez, J.G., Ruiz, M., Arévalo, C., Jiménez-Ramírez, A.: Software Process Simulation Modeling: Systematic literature review. Comput. Stand. Interfaces 70, 103425 (2020)
Lunesu, M. I., Münch, J., Marchesi, M., Kuhrmann, M.: Using simulation for understanding and reproducing distributed software development processes in the cloud. Inf. Softw. Technol. 103, 226–238 (2018)
Garcia, M.T., Barcelona, M.A., Ruiz, M., Garcia-Borgonon, L.; Ramos, I.: A discrete-event simulation metamodel for obtaining simulation models from business process models. In: José Escalona, M., Aragón, G., Linger, H., Lang, M., Barry, C., Schneider, C. (eds.) Information System Development, pp. 307–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07215-9_25
Janses-Vullers, M.H., Netjes, M.: Business Process Simulation - A Tool Survey (2006)
Diallo, S.Y., Gore, R.J., Padilla, J.J., Lynch, C.J.: An overview of modeling and simulation using content analysis. Scientometrics 103(3), 977–1002 (2015)
Frerichs, L., Smith, N.R., Hassmiller, K., Bendor, T.K., Evenson, K.R.: A scoping review of simulation modeling in built environment and physical activity research. Heal. Place 57, 122–130 (2019)
Onggo, B.S.S.: Proceedings of the 2012 Winter Simulation Conference (2012)
Anjomshoae, A., Hassan, A., Rebi, M., Rani, A.: A review of ergonomics and simulation modeling in healthcare delivery system. Adv. Mater. Res. 845, 604–608 (2014)
Fone, D., et al.: Systematic review of the use and value of computer simulation modelling in population health and health care delivery. J Pub. Heal. Med. 25(4), 325–335 (2003)
Salleh, S., Thokala, P., Brennan, A., Hughes, R., Booth, A.: Simulation modelling in healthcare : an umbrella review of systematic literature reviews. PharmacoEconomics 35, 937–949 (2017)
Handel, A., La Gruta, N.L., Thomas, P.G.: Simulation modelling for immunologists. Nat. Rev. Immunol. 20, 186–195 (2019)
Long, K.M., Meadows, G.M.: Simulation modelling in mental health: a systematic review. J. Simul. 12(1), 76–85 (2017)
Moon, Y.B.: Simulation modelling for sustainability: a review of the literature. Int. J. Sustain. Eng. 10(1), 2–19 (2017)
Kirimtat, A., Kundakci, B., Chatzikonstantinou, I., Sariyildiz, S.: Review of simulation modeling for shading devices in buildings. Renew. Sust. Energy Rev. 53, 23–49 (2016)
Cheng, Y., Liu, D., Chen, J., Namilae, S.: Human behavior under emergency and its simulation modeling : a review. In: Cassenti, D. (eds.) Advances in Human Factors in Simulation and Modeling, vol. 780. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94223-0_30
Abdelmegid, M.A., González, V.A., Poshdar, M., Sullivan, M.O., Walker, C.G., Ying, F.: Automation in Construction Barriers to adopting simulation modelling in construction industry. Autom. Constr. 111, 103046 (2020)
Faingloz, L., Tolujew, J.: Simulation modelling application in real-time service systems: review of the literature. Procedia Eng. 178(112), 200–205 (2017)
Zhang, H., Kitchenham, B., Pfahl, D.: Software process simulation modeling: an extended systematic review. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 309–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14347-2_27
Creswell, J.W., Creswell, J.D.: Research Design, 5th edn. SAGE, London (2018)
Ananiadou, S., Procter, R., Thomas, J.: Supporting systematic reviews using text mining. Soc. Sci. Comput. Rev. 27, 509–523 (2009)
Sinoara, R.A., Antunes, J., Rezende, S.O.: Text mining and semantics: a systematic mapping study. J. Braz. Comput. Soc. 23(1), 1–20 (2017). https://doi.org/10.1186/s13173-017-0058-7
Kotu, V., Deshpande, B.: Predictive Analytics and Data Mining. Elsevier, Amsterdam (2015)
Kaur, A., Chopra, D.; Comparison of text mining tools. In: 5th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), pp. 365–376 (2016)
Zhu, F., Patumcharoenpol, P., Zhang, C., Yang, Y., Chan, J.: Biomedical text mining and its applications in cancer research. J. Biomed. Inform. 46, 200–211 (2013)
Chen, C., Dubin, R., Schultz, T.: Science mapping. In: Encyclopedia of Information Science and Technology, 3rd edn., pp. 4171–4184 (2014)
Chen, C.: Science mapping: a systematic review of the literature. J. Data Inf. Sci. 2(2), 1–40 (2017)
Andres, A.: Measuring Academic Research. Chandos Publishing, Oxford (2009)
Rojas-Sola, J.I., Aguilera-García, A.I.: Global bibliometric analysis of building information modeling through the web of science core collection (2003–2017). Inf. de La Con. 72(557), 1–12 (2020). https://doi.org/10.3989/IC.66768
Teixeira, S., Pocinho, M.: The bibliometric perspective of hotel industry and regional competitiveness: J. Spat. Org. Dyn. 8(2), 129–147 (2020)
Daenekindt, S., Huisman, J.: Mapping the scattered field of research on higher education : a correlated topic model of 17, 000 articles, 1991–2018. High. Educ. 80(516), 1–17 (2020)
RapidMiner: RapidMiner (2020). http://docs.rapidminer.com/
North, M.: Data Mining for the Masses, Global Text Project (2012)
Bayhaqy, A., Sfenrianto, S., Nainggolan, K., Kaburuan, E.: Sentiment analysis about e-commerce from tweets using decision tree, k-nearest neighbor, and Naïve Bayes. In: ICOT 2018 (2019)
Hrcka, L., Simoncicova, V., Tadanai, O., Tanuska, P., Vazan, P.: Using text mining methods for analysis of production data in automotive industry. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) CSOC 2017. AISC, vol. 573, pp. 393–403. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57261-1_39
Van Eck, N.J., Waltman, L.: Text mining and visualization using VOSviewer (2011)
Van Eck, N.J., Waltman, L., Dekker, R., Van Den Berg, J.: A comparison of two techniques for bibliometric mapping: multidimensional scaling and VOS. J. Am. Soc. Inf. Sci. Technol. 61(12), 2405–2416 (2010)
Hallinger, P., Gümüş, S., Bellibaş, M.: ‘Are principals instructional leaders yet?’ A science map of the knowledge base on instructional leadership, 1940–2018. Scientometrics 122, 1629–1650 (2020)
Zurita, G., Shukla, A.K., Pino, J.A., Merigó, J.M., Lobos-Ossandón, V., Muhuri, P.K.: A bibliometric overview of the journal of network and computer applications between 1997 and 2019. J. Network Comput. Appl. 165, 102695 (2020)
Obileke, K., Onyeaka, H., Omoregbe, O., Makaka, G., Nwokolo, N., Mukumba, P.: Bioenergy from bio-waste: a bibliometric analysis of the trend in scientific research from 1998–2018. Bio. Convers. Biorefinery (2020). https://link.springer.com/article/10.1007/s13399-020-00832-9
Silge, J., Robinson, R.: Welcome to Text Mining with R. O’Reilly, Sebastopol (2017)
Arveson, P.: The Deming Cycle. 2020. https://balancedscorecard.org/bsc-basics/articles-videos/the-deming-cycle. Accessed 10 Feb 2020
Bloom, B. S.: Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I, Cognitive domain. Longmans: Green, New York (1965)
Britto, R., Usman, M: Bloom’s Taxonomy in Software Engineering Education : A Systematic Mapping Study (2015)
Nentl, N., Zietlow, R.: Using bloom’ s taxonomy to teach critical thinking skills to business students. Coll. Undergrad. Libr. 15(1–2), 159–172 (2008)
Ninčević Pašalić, I., Ćukušić, M., Jadrić, M.: Smart city research advances in Southeast Europe. Int. J. Inf. Manage (2020, in press)
Acknowledgment
This work has been supported by the Croatian Science Foundation (project No. UIP-2017-05-7625).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Jadrić, M., Mijač, T., Ćukušić, M. (2020). Text Mining the Variety of Trends in the Field of Simulation Modeling Research. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds) Perspectives in Business Informatics Research. BIR 2020. Lecture Notes in Business Information Processing, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-61140-8_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-61140-8_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61139-2
Online ISBN: 978-3-030-61140-8
eBook Packages: Computer ScienceComputer Science (R0)