Skip to main content

Designing Causal Inference Systems for Value-Based Spare Parts Pricing

An ADR Study at MAN Energy Solutions

  • Conference paper
  • First Online:
Perspectives in Business Informatics Research (BIR 2020)

Abstract

In the wake of servitization and increased aftersales competition, original equipment manufacturers (OEMs) begin to change their pricing strategies from traditional cost-based to value-based pricing. As value-based pricing is much more individualized and data-driven, it becomes increasingly important to validate one’s pricing hypotheses by estimating the causal effects of pricing interventions. Randomized controlled trials (RCTs) are conceptually the best method for making such causal inferences. However, RCTs are complicated, expensive, and often not feasible. MAN Energy Solutions was facing a similar challenge. In reaction to his, we conducted an action design research study (ADR) in which we designed and implemented a novel causal inference system for value-based spare parts pricing. Based on this, we formalize design principles for the broader class of such systems that emphasize the need for pre-aggregation when dealing with lumpy aftersales data, scalability when having to run numerous analyses on heterogenous spare parts portfolios, and incorporating unaffectedness conditions that help to avoid spillover effects caused by often interdependent spare parts purchases. Also, they encourage analysts to take pre-intervention predictability into account when interpreting causal effects, to incorporate a manipulated treatment variable into the causal inference model, and to present the system output in interactive user interfaces to aid understanding and acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sundin, E.: Life-cycle perspectives of product/service-systems: in design theory. In: Sakao, T., Lindahl, M. (eds.) Introduction to Product/Service-System Design. Springer, London (2009). https://doi.org/10.1007/978-1-84882-909-1_2

  2. Cohen, M.A., Agrawal, N., Agrawal, V.: Winning in the aftermarket. Harv. Bus. Rev. 84, 129–138 (2006)

    Google Scholar 

  3. Thiess, T., Müller, O., Tonelli, L.: Design principles for explainable sales win-propensity prediction systems. In: WI2020 Zentrale Tracks, pp. 326–340 (2020)

    Google Scholar 

  4. Huang, M.H., Rust, R.T.: Artificial intelligence in service. J. Serv. Res. 21, 155–172 (2018)

    Article  Google Scholar 

  5. Rust, R.T., Huang, M.H.: The service revolution and the transformation of marketing science. Mark. Sci. 33, 206–221 (2014)

    Article  Google Scholar 

  6. Thiess, T., Müller, O.: Towards design principles for data-driven decision making - an action design research project in the maritime industry. In: 26th European Conference on Information System Beyond Digitization –Facets of Socio-Technical Change. ECIS 2018 (2018)

    Google Scholar 

  7. Gallagher, T., Mitchke, M.D., Rogers, M.C.: Profiting from spare parts. McKinsey Q. 2, 1–4 (2005)

    Google Scholar 

  8. Hinterhuber, A.: Towards value-based pricing—an integrative framework for decision making. Ind. Mark. Manag. 33, 765–778 (2004)

    Article  Google Scholar 

  9. Hinterhuber, A.: Value delivery and value-based pricing in industrial markets. Adv. Bus. Mark. Purch. 14, 381–448 (2008)

    Article  Google Scholar 

  10. Hinterhuber, A., Liozu, S.M.: Is innovation in pricing your next source of competitive advantage? Bus. Horiz. 57, 413–423 (2014)

    Article  Google Scholar 

  11. Wickboldt, C., Kliewer, N.: Value based pricing meets data science: a concept for automated spare part valuation (2018)

    Google Scholar 

  12. Cullbrand, M., Levén, L.: Spare parts pricing-setting the right prices for sustainable profit at Atlet (2012)

    Google Scholar 

  13. Andersson, J., Bengtsson, J.: Spare parts pricing-Pre-study for a pricing strategy at Pon (2013)

    Google Scholar 

  14. Goodacre, S.: Uncontrolled before-after studies: discouraged by cochrane and the EMJ. Emerg. Med. J. 32, 507–508 (2015)

    Article  Google Scholar 

  15. Hernán, M.A., Hernández-Diaz, S., Werler, M.M., Mitchell, A.A.: Causal knowledge as a prerequisite for confounding evaluation: an application to birth defects epidemiology. Am. J. Epidemiol. 155, 176–184 (2002)

    Article  Google Scholar 

  16. Cochrane, A.L., et al.: Effectiveness and efficiency: random reflections on health services. Nuffield Provincial Hospitals Trust London (1972)

    Google Scholar 

  17. Cartwright, N.: Are RCTs the gold standard? Biosocieties 2, 11–20 (2007)

    Article  Google Scholar 

  18. Varian, H.R.: Causal inference in economics and marketing. Proc. Natl. Acad. Sci. U.S.A. 113, 7310–7315 (2016)

    Article  Google Scholar 

  19. Mora Cortez, R., Johnston, W.J.: The future of B2B marketing theory: a historical and prospective analysis. Ind. Mark. Manag. 66, 90–102 (2017)

    Article  Google Scholar 

  20. Martínez-López, F.J., Casillas, J.: Artificial intelligence-based systems applied in industrial marketing: An historical overview, current and future insights. Ind. Mark. Manag. 42, 489–495 (2013)

    Article  Google Scholar 

  21. Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action design research. MIS Q. 35, 37–56 (2011)

    Article  Google Scholar 

  22. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)

    Article  Google Scholar 

  23. Benbasat, I., Zmud, R.W.: The identity crisis within the IS discipline: defining and communicating the discipline’s core properties. MIS Q. Manag. Inf. Syst. 27, 183–194 (2003)

    Article  Google Scholar 

  24. Schulz, K.F., Chalmers, I., Hayes, R.J., Altman, D.G.: Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA J. Am. Med. Assoc. 273, 408–412 (1995)

    Article  Google Scholar 

  25. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974)

    Article  Google Scholar 

  26. Cook, T.D., Campbell, D.T., Day, A.: Quasi-Experimentation: Design & Analysis Issues for Field Settings. Houghton Mifflin, Boston (1979)

    Google Scholar 

  27. Ashenfelter, O., Card, D.: Using the longitudinal structure of earnings to estimate the effect of training programs (1985)

    Google Scholar 

  28. Card, D.: The impact of the Mariel boatlift on the Miami labor market. Ind. Labor Relat. Rev. 43, 245 (1990)

    Article  Google Scholar 

  29. Abadie, A.: Semiparametric difference-in-differences estimators. Rev. Econ. Stud. 72, 1–19 (2005)

    Article  Google Scholar 

  30. Brodersen, K.H., Gallusser, F., Koehler, J., Remy, N., Scott, S.L.: Inferring causal impact using Bayesian structural time-series models. Ann. Appl. Stat. 9, 247–274 (2015)

    Article  Google Scholar 

  31. Bertrand, M., Duflo, E., Mullainathan, S.: How much should we trust differences-in-differences estimates? Q. J. Econ. 119, 249–275 (2004)

    Article  Google Scholar 

  32. Abadie, A., Gardeazabal, J.: The economic costs of conflict: a case study of the Basque Country. Am. Econ. Rev. 93, 113–132 (2003)

    Article  Google Scholar 

  33. Abadie, A., Diamond, A., Hainmueller, J.: Synthetic control methods for comparative case studies: estimating the effect of California’s tobacco control program. J. Am. Stat. Assoc. 105, 493–505 (2010)

    Article  Google Scholar 

  34. Varian, H.R.: Big data: new tricks for econometrics. J. Econ. Perspect. 28, 3–28 (2014)

    Article  Google Scholar 

  35. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)

    Article  Google Scholar 

  36. Baskerville, R.L., Myers, M.D.: Design ethnography in information systems. Inf. Syst. J. 25, 23–46 (2015)

    Article  Google Scholar 

  37. Croston, J.D.: Forecasting and stock control for intermittent demands. Oper. Res. Q. 23, 289–303 (1972). https://doi.org/10.1057/jors.1972.50

    Article  Google Scholar 

  38. Harvey, A.C., Amemiya, T.: Advanced Econometrics. Harvard University Press, Cambridge (1987)

    Book  Google Scholar 

  39. Scott, S.L., Varian, H.R.: Predicting the present with Bayesian structural time series. Int. J. Math. Model. Num. Optim. 5, 4–23 (2014)

    Google Scholar 

  40. Bartezzaghi, E., Verganti, R., Zotteri, G.: Simulation framework for forecasting uncertain lumpy demand. Int. J. Prod. Econ. 59, 499–510 (1999)

    Article  Google Scholar 

  41. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts, Australia (2018)

    Google Scholar 

  42. Scott, S.L., Varian, H.: Bayesian variable selection for nowcasting economic time series (2013)

    Google Scholar 

  43. Bartezzaghi, E., Kalchschmidt, M.: The Impact of aggregation level on lumpy demand management. In: Altay, N., Litteral, L. (eds.) Service Parts Management. Springer, London (2011). https://doi.org/10.1007/978-0-85729-039-7_4

  44. Zotteri, G., Kalchschmidt, M.: A model for selecting the appropriate level of aggregation in forecasting processes. Int. J. Prod. Econ. 108, 74–83 (2007)

    Article  Google Scholar 

  45. Bellman, R.E.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (2015)

    Google Scholar 

  46. Gregor, S., Benbasat, I.: Explanations from intelligent systems: theoretical foundations and implications for practice. MIS Q. Manag. Inf. Syst. 23, 497–530 (1999)

    Article  Google Scholar 

  47. Martens, D., Provost, F.: Explaining data-driven document classifications. MIS Q. Manag. Inf. Syst. 38, 73–99 (2014)

    Article  Google Scholar 

  48. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669 (1995)

    Article  Google Scholar 

  49. Tashman, L.J.: Out-of-sample tests of forecasting accuracy: an analysis and review. Int. J. Forecast. 16, 437–450 (2000)

    Article  Google Scholar 

  50. Fildes, R., Makridakis, S.: The impact of empirical accuracy studies on time series analysis and forecasting. Int. Stat. Rev. Int. Stat. 63, 289–308 (1995)

    Article  Google Scholar 

  51. Makridakis, S., et al.: The accuracy of extrapolation (time series) methods: results of a forecasting competition. J. Forecast. 1, 111–153 (1982)

    Article  Google Scholar 

  52. Bergmeir, C., Hyndman, R.J., Koo, B.: A note on the validity of cross-validation for evaluating autoregressive time series prediction. Comput. Stat. Data Anal. 120, 70–83 (2018)

    Article  Google Scholar 

  53. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, decisions. J. Am. Stat. Assoc. 100, 322–331 (2005)

    Article  Google Scholar 

  54. Pearl, J.: Probabilities of causation: three counterfactual interpretations and their identification. Synthese 121, 93–149 (1999). https://doi.org/10.1023/A:1005233831499

    Article  Google Scholar 

  55. Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  56. Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014). https://doi.org/10.1007/s00371-013-0892-3

    Article  Google Scholar 

  57. Kayande, U., De Bruyn, A., Lilien, G.L., Rangaswamy, A., van Bruggen, G.H.: How incorporating feedback mechanisms in a DSS affects DSS evaluations. Inf. Syst. Res. 20, 527–546 (2009)

    Article  Google Scholar 

  58. Gregor, S., Jones, D.: The anatomy of a design theory. J. Assoc. Inf. Syst. 8, 312–335 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiemo Thiess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thiess, T., Müller, O. (2020). Designing Causal Inference Systems for Value-Based Spare Parts Pricing. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds) Perspectives in Business Informatics Research. BIR 2020. Lecture Notes in Business Information Processing, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-61140-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61140-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61139-2

  • Online ISBN: 978-3-030-61140-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics