Abstract
Objective, reproducible and quantifiable measurements based on well-defined metrics are a widespread instrument for quality assurance in engineering disciplines and also in ontology engineering. Ontology metrics allow for the assessment of their quality and the comparison of different versions of the same ontology. We argue that such a comparison and especially the view on the evolutional evolvement bears valuable insights on the effect of explicit and implicit design decisions. This paper examines the use of quality metrics in the evolution of an ontology that is used in an image recognition context in the fashion domain. Overall, 51 incremental versions were analyzed using the OntoMetrics framework by Rostock University. Using 13 selected criteria, the evolution of the ontology is quantified and the effect of design decisions on the analyzed criteria is outlined. The critical assessment of ontology metrics is further used to uncover weak spots in the ontology. These weak spots enabled the deriving of improvement recommendations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The ontology items are named exactly like in the ontology and are therefore not grammatically correct in the context of the given sentences.
References
Lantow, B.: OntoMetrics: putting metrics into use for ontology evaluation. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management. Porto, Portugal, 9 November 2016–11 November 2016, pp. 186–191. SCITEPRESS, [S. l.] (2016). https://doi.org/10.5220/0006084601860191
Checco, A., et al.: FashionBrain project: a vision for understanding Europe’s fashion data universe. http://arxiv.org/pdf/1710.09788v1 (2017)
Lourdusamy, R., John, A.: A review on metrics for ontology evaluation. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC). 2018 2nd International Conference on Inventive Systems and Control (ICISC), Coimbatore, 19 January 2018–20 January 2018, pp. 1415–1421. IEEE (2018)
Vrandečić, D., Sure, Y.: How to design better ontology metrics. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 311–325. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72667-8_23
Djedidi, R., Aufaure, M.-A.: ONTO-EVO AL an ontology evolution approach guided by pattern modeling and quality evaluation. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 286–305. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11829-6_19
Lantow, B., Sandkuhl, K.: An analysis of applicability using quality metrics for ontologies on ontology design patterns. Intell. Syst. Account. Finance Manage. (2015). https://doi.org/10.1002/isaf.1360
Tartir, S., Arpinar, B., Moore, M., Sheth, A.P., Aleman-Meza, B.: OntoQA: metric-based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources, Houston, 27 November 2005 (2005)
Gangemi, A., Catena, C., Ciaramita, M., Lehmann, J.: A theoretical framework for ontology evaluation and validation. In: Bouquet, P., Tummarello, G. (eds.) Semantic Web Applications and Perspectives. SWAP 2005, Italy, 14 December 2005–16 December 2005. CEUR (2005)
Baader, F., Horrocks, I., Lutz, C., Sattler, U. (eds.): An Introduction to Description Logic. Cambridge University Press, Cambridge (2017)
Baader, F., Horrocks, I., Lutz, C., Sattler, U.: Description logic terminology. In: Baader, F., Horrocks, I., Lutz, C., Sattler, U. (eds.) An Introduction to Description Logic, pp. 228–233. Cambridge University Press, Cambridge (2017)
Allemang, D., Hendler, J.: Counting and sets in OWL. In: Allemang, D., Hendler, J.A. (eds.) Semantic Web for the Working Ontologist. Modeling in RDF, RDFS and OWL, 2nd edn., pp. 249–278. Morgan Kaufmann Publishers/Elsevier, Amsterdam, Boston (2012)
Antoniou, G., van Harmelen, F.: A semantic Web primer, 2nd edn. Cooperative information systems. MIT, Cambridge, Mass., London (2008)
McDaniel, M., Storey, V.C.: Domain modeling for the semantic web: assessing the pragmatics of ontologies. In: CEUR Workshop Proceedings 1979 (2017)
Duque-Ramos, A., Fernandez-Breis, J.T., Stevens, R., Aussenac-Gilles, N.: OQuaRE: a SQuaRE-based approach for evaluating the quality of ontologies. J. Res. Pract. Inf. Technol. 43, 159 (2011)
Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45810-7_24
Brank, J., Grobelnik, M., Mladenić, D.: A survey of ontology evaluation techniques. In: Proceedings of the Conference on Data Mining and Data Warehouses (SIGKDD 2005) (2005)
McDaniel, M., Storey, V.C., Sugumaran, V.: Assessing the quality of domain ontologies: metrics and an automated ranking system. Data Knowl. Eng. 115, 32–47 (2018)
Cardoso, S.D., et al.: Leveraging the impact of ontology evolution on semantic annotations. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 68–82. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49004-5_5
Hammar, K.: Content Ontology Design Patterns: Qualities, Methods, and Tools, vol. 1879. Linköping University Electronic Press, Linköping (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Reiz, A., Sandkuhl, K. (2020). Design Decisions and Their Implications: An Ontology Quality Perspective. In: Buchmann, R.A., Polini, A., Johansson, B., Karagiannis, D. (eds) Perspectives in Business Informatics Research. BIR 2020. Lecture Notes in Business Information Processing, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-030-61140-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-61140-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61139-2
Online ISBN: 978-3-030-61140-8
eBook Packages: Computer ScienceComputer Science (R0)