Skip to main content

An Efficient Semi-Algebraic Decoding Algorithm for Golay Code

  • Conference paper
  • First Online:
Advanced Communication Systems and Information Security ( ACOSIS 2019)

Abstract

In this paper, we propose an algorithm for decoding the QR(23,12,7) code knowing by the binary Golay code. This method never calculates unknown syndromes and does not need the error locator polynomial. Indeed, we use simple parameters to locate the error position. So, to validate the proposed method, all possible error patterns are tested and the proposed decoder correct all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boualame, H., Chana, I., Belkasmi; M.: New efficient decoding algorithm of the (17, 9, 5) quadratic residue code. In: International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, pp. 1–6 (2018)

    Google Scholar 

  2. Prange, E.: Some cyclic error-correcting codes with simple decoding algorithms. Air Force Cambridge Res. Center, Bedford, MA, USA, TN-58-156 (1958)

    Google Scholar 

  3. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  4. Berlekamp, E. R.: Algebraic Coding Theory, revised edn. McGraw-Hill, Aegean Park Press (1984)

    Google Scholar 

  5. Elia, M.: Algebraic decoding of the (23, 12, 7) Golay codes. IEEE Trans. Inf. Theory 33(1), 150–151 (1987)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Reed, I.S., Helleseth, T., Truong, T.K.: Use of Grobner bases to decode binary cyclic codes up to the true minimum distance. IEEE Trans. Commun. 40(5), 1654–1661 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Reed, I., Yin, X., Truong, T.K.: Algebraic decoding of the (32,16,8) quadratic residue code. IEEE Trans. Inf. Theory 36(4), 876–880 (1990)

    Article  MathSciNet  Google Scholar 

  8. Reed, I., Truong, T.K., Chen, X., Yin, X.: The algebraic decoding of the (41 21 9) quadratic residue code. IEEE Trans. Inf. Theory 38(3), 974–986 (1992)

    Article  MathSciNet  Google Scholar 

  9. He, R., Reed, I.S., Truong, T.K., Chen, X.: Decoding the (47, 24, 11) quadratic residue code. IEEE Trans. Inf. Theory 47, 1181–1186 (2001)

    Article  MathSciNet  Google Scholar 

  10. Chang, Y., Truong, T.K., Reed, I.S., Cheng, H.Y., Lee, C.D.: Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes. IEEE Trans. Commun. 51, 1463–1473 (2003)

    Article  Google Scholar 

  11. Wang, L., Li, Y., Truong, T.K., Lin, T.: On decoding of the (89, 45, 17) quadratic residue code. IEEE Trans. Commun. 61(3), 832–841 (2013)

    Article  Google Scholar 

  12. Li, Y., Liu, H., Chen, Q., Truong, T.K.: On decoding of the (73, 37, 13) quadratic residue code. IEEE Trans. Commun. 62(8), 2615–2625 (2014)

    Article  Google Scholar 

  13. Chen, Y.H., Truong, T.K., Huang, C.H., Chien, C.H.: A lookup table decoding of systematic (47, 24, 11) quadratic residue code. Inf. Sci. 179, 2470–2477 (2009)

    Article  MathSciNet  Google Scholar 

  14. Chien, C.H., Huang, C.H., Chang, J.: Decoding of binary quadratic residue codes with hash table. IET Commun. 10(1), 122–130 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Boualame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boualame, H., Chana, I., Belkasmi, M. (2020). An Efficient Semi-Algebraic Decoding Algorithm for Golay Code. In: Belkasmi, M., Ben-Othman, J., Li, C., Essaaidi, M. (eds) Advanced Communication Systems and Information Security. ACOSIS 2019. Communications in Computer and Information Science, vol 1264. Springer, Cham. https://doi.org/10.1007/978-3-030-61143-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61143-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61142-2

  • Online ISBN: 978-3-030-61143-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics