Skip to main content

Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection

  • Conference paper
  • First Online:
Interpretable and Annotation-Efficient Learning for Medical Image Computing (IMIMIC 2020, MIL3ID 2020, LABELS 2020)

Abstract

An Imbalance-Effective Active Learning (IEAL) based deep neural network algorithm is proposed for the automatic detection of nucleus, lymphocyte and plasma cells in hepatitis diagnosis. The active sampling approach reduces the training sample annotation cost and mitigates extreme imbalances among the nucleus, lymphocytes and plasma samples. A Bayesian U-net model is developed by incorporating IEAL with basic U-Net. The testing results obtained using an in-house dataset consisting of 43 whole slide images (300 256 * 256 images) show that the proposed method achieves an equal or better performance compared than a basic U-net classifier using less than half the number of annotated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Settles, B.: Active learning literature survey. Department of Computer Sciences, University of Wisconsin-Madison (2009)

    Google Scholar 

  2. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for information extraction. In: Hoffmann, F., Hand, D.J., Adams, N., Fisher, D., Guimaraes, G. (eds.) International Symposium on Intelligent Data Analysis, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44816-0_31

  3. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Google Scholar 

  4. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  5. Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: active learning in imbalanced data classification. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 127–136. ACM (2007)

    Google Scholar 

  6. Fu, C., Qu, W., Yang, Y.: Actively learning from mistakes in class imbalance problems. IFAC Proc. Vol. 46(13), 341–346 (2013)

    Article  Google Scholar 

  7. Zhang, X., Yang, T., Srinivasan, P.: Online asymmetric active learning with imbalanced data. In: SIGKDD (2016)

    Google Scholar 

  8. Zhang, Y.: Online adaptive asymmetric active learning for budgeted imbalanced data. In: SIGKDD (2018)

    Google Scholar 

  9. Sadafi, A., et al.: Multiclass deep active learning for detecting red blood cell subtypes in brightfield microscopy. In: Shen, D., Liu, T., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 685–693. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_76

    Chapter  Google Scholar 

  10. He, K., Girshick, R., Dollár, P.: Rethinking imagenet pre-training. arXiv preprint arXiv:1811.08883 (2018)

  11. Cao, H., Bernard, S., Heutte, L., Sabourin, R.: Improve the performance of transfer learning without fine-tuning using dissimilarity-based multi-view learning for breast cancer histology images. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 779–787. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93000-8_88

    Chapter  Google Scholar 

  12. Zhou, Z., Shin, J., Zhang, L., Gurudu, S., Gotway, M., Liang, J.: Fine-tuning convolutional neural networks for biomedical image analysis: actively and incrementally. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7340–7351 (2017)

    Google Scholar 

  13. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2591–2600 (2016)

    Article  Google Scholar 

  14. Gorriz, M., Carlier, A., Faure, E., Giro-i-Nieto, X.: Cost-effective active learning for melanoma segmentation. arXiv preprint arXiv:1711.09168 (2017)

  15. Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., Rother, C.: Cereals-cost-effective region-based active learning for semantic segmentation. arXiv preprint arXiv:1810.09726 (2018)

  16. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  17. Ozdemir, F., Peng, Z., Tanner, C., Fuernstahl, P., Goksel, O.: Active learning for segmentation by optimizing content information for maximal entropy. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS-2018. LNCS, vol. 11045, pp. 183–191. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_21

    Chapter  Google Scholar 

  18. Zhu, R.X., Seto, W.K., Lai, C.L., Yuen, M.F.: Epidemiology of hepatocellular carcinoma in the Asia-Pacific region. Gut Liver 10(3), 332 (2016)

    Article  Google Scholar 

  19. Fridman, W.H., Pages, F., Sautes-Fridman, C., Galon, J.: The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12(4), 298 (2012)

    Google Scholar 

  20. Ishak, K., et al.: Histological grading and staging of chronic hepatitis. J. Hepatol. 22(6), 696–699 (2012)

    Google Scholar 

  21. https://kknews.cc/zh-tw/health/pbk2xp.html

  22. Milletari, F., Navab, N., Ahmadi, S. A. V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  23. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau-Choo Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, CT. et al. (2020). Imbalance-Effective Active Learning in Nucleus, Lymphocyte and Plasma Cell Detection. In: Cardoso, J., et al. Interpretable and Annotation-Efficient Learning for Medical Image Computing. IMIMIC MIL3ID LABELS 2020 2020 2020. Lecture Notes in Computer Science(), vol 12446. Springer, Cham. https://doi.org/10.1007/978-3-030-61166-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61166-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61165-1

  • Online ISBN: 978-3-030-61166-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics