Abstract
The Plackett-Luce model represents discrete choices from a set of items and it is often applied to rank aggregation problems. The iterative majorization-minorization method is among the most relevant approaches for finding the maximum likelihood estimation of the parameters of the Plackett-Luce model, but its convergence might be slow. A noninformative initialization is usually adopted which assumes all items are equally relevant at the first step of the iterative inference process. This paper investigates the adoption of approximate inference methods which could allow a better initialization, leading to a smaller number of iterations required for the convergence of majorization-minorization. Two alternatives are adopted: a spectral inference method from the literature and also a novel approach based on a Poisson probabilistic model. Empirical evaluation is performed using synthetic and real-world datasets. It was revealed that initialization provided by an approximate method can lead to statistically significant reductions in both the number of iterations required and also in the overall computational time when compared to the scheme usually adopted for majorization-minorization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, A., Patil, P., Agarwal, S.: Accelerated spectral ranking. In: International Conference on Machine Learning, pp. 70–79 (2018)
Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I. The method of paired comparisons. Biometrika 39(3/4), 324–345 (1952)
Caron, F., Doucet, A.: Efficient Bayesian inference for generalized Bradley-Terry models. J. Comput. Graph. Stat. 21(1), 174–196 (2012)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)
Elo, A.E.: The Rating of Chessplayers, Past & Present. Arco, New York (1978)
Guiver, J., Snelson, E.: Bayesian inference for Plackett-Luce ranking models. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 377–384 (2009)
Hajek, B., Oh, S., Xu, J.: Minimax-optimal inference from partial rankings. In: Advances in Neural Information Processing Systems, pp. 1475–1483 (2014)
Hastie, T., Tibshirani, R.: Classification by pairwise coupling. Ann. Stat. 26, 451–471 (1998)
Hunter, D.R., et al.: MM algorithms for generalized Bradley-Terry models. Ann. Stat. 32(1), 384–406 (2004)
Kamishima, T., Akaho, S.: Efficient clustering for orders. In: Zighed, D.A., Tsumoto, S., Ras, Z.W., Hacid, H. (eds.) Mining Complex Data. Studies in Computational Intelligence, vol. 165, pp. 261–279. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88067-7_15
Kumar, R., Tomkins, A., Vassilvitskii, S., Vee, E.: Inverting a steady-state. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pp. 359–368 (2015)
Lange, K., Hunter, D.R., Yang, I.: Optimization transfer using surrogate objective functions. J. Comput. Graph. Stat. 9(1), 1–20 (2000)
Luce, R.D.: Individual Choice Behavior: A Theoretical Analysis. Wiley, New York (1959)
Maystre, L., Grossglauser, M.: Fast and accurate inference of Plackett-Luce models. In: Advances in Neural Information Processing Systems, pp. 172–180 (2015)
McFadden, D., et al.: Conditional logit analysis of qualitative choice behavior. In: Zarembka, P. (ed.) Frotiers in Econometrics, pp. 105–142. Academic Press, Cambridge (1973)
Negahban, S., Oh, S., Shah, D.: Iterative ranking from pair-wise comparisons. In: Advances in Neural Information Processing Systems, pp. 2474–2482 (2012)
Negahban, S., Oh, S., Thekumparampil, K.K., Xu, J.: Learning from comparisons and choices. J. Mach. Learn. Res. 19(1), 1478–1572 (2018)
Plackett, R.L.: The analysis of permutations. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 24(2), 193–202 (1975)
Rao, P., Kupper, L.L.: Ties in paired-comparison experiments: a generalization of the Bradley-Terry model. J. Am. Stat. Assoc. 62(317), 194–204 (1967)
Soufiani, H.A., Chen, W., Parkes, D.C., Xia, L.: Generalized method-of-moments for rank aggregation. In: Advances in Neural Information Processing Systems, pp. 2706–2714 (2013)
Thurstone, L.L.: The method of paired comparisons for social values. J. Abnorm. Soc. Psychol. 21(4), 384 (1927)
Zermelo, E.: Die berechnung der turnier-ergebnisse als ein maximumproblem der wahrscheinlichkeitsrechnung. Math. Z. 29(1), 436–460 (1929)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Emmendorfer, L.R. (2020). On Improving the Efficiency of Majorization-Minorization for the Inference of Rank Aggregation Models. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-61377-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61376-1
Online ISBN: 978-3-030-61377-8
eBook Packages: Computer ScienceComputer Science (R0)