Skip to main content

Diagnosis of Apple Fruit Diseases in the Wild with Mask R-CNN

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

A major challenge in image classification tasks using Machine Learning, and in particular when using deep neural networks, is domain shifting in deployment. This happens when images during usage are capture in different conditions from those used during training. In this paper, we show that despite previous works on the diagnosis of apple tree diseases using standard Convolutional Neural Networks displaying high accuracy, they do so only when no domain shift is present. When the trained model is asked to classify photos of apples taken in the wild, a 22% reduction in F1 score is observed. We propose to treat the task as a segmentation problem and test two different approaches, showing that using Mask R-CNN allows not only to improve performance in the original domain by 3%, but also significantly reduce losses in the new domain (only 6% reduction in F1 score). We establish segmentation as an important alternative towards improving diagnosis of apple tree diseases from photos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dataset will be made available after publication.

  2. 2.

    The source code for the Mask R-CNN model will be made available after publication.

References

  1. Abd El-aziz, A.A., Darwish, A., Oliva, D., Hassanien, A.E.: Machine learning for apple fruit diseases classification system. In: Hassanien, A.-E., Azar, A.T., Gaber, T., Oliva, D., Tolba, F.M. (eds.) AICV 2020. AISC, vol. 1153, pp. 16–25. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44289-7_2

    Chapter  Google Scholar 

  2. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow (2017). https://github.com/matterport/Mask_RCNN

  3. Agarwal, A., Sarkar, A., Dubey, A.K.: Computer vision-based fruit disease detection and classification. In: Tiwari, S., Trivedi, M.C., Mishra, K.K., Misra, A.K., Kumar, K.K. (eds.) Smart Innovations in Communication and Computational Sciences. AISC, vol. 851, pp. 105–115. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2414-7_11

    Chapter  Google Scholar 

  4. Allehaibi, K.H.S., Nugroho, L.E., Lazuardi, L., Prabuwono, A.S., Mantoro, T., et al.: Segmentation and classification of cervical cells using deep learning. IEEE Access 7, 116925–116941 (2019)

    Article  Google Scholar 

  5. Anantharaman, R., Velazquez, M., Lee, Y.: Utilizing mask R-CNN for detection and segmentation of oral diseases. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2197–2204. IEEE (2018)

    Google Scholar 

  6. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  7. Ballester, P., Correa, U.B., Birck, M., Araujo, R.: Assessing the performance of convolutional neural networks on classifying disorders in apple tree leaves. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 31–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_3

    Chapter  Google Scholar 

  8. Ballester, P., Correa, U.B., Araujo, R.M.: Lateral representation learning in convolutional neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  9. Dewliya, S., Singh, M.P.: Detection and classification for apple fruit diseases using support vector machine and chain code. Int. Res. J. Eng. Technol. (IRJET) 2(04), 2097–2104 (2015)

    Google Scholar 

  10. Dias, P.A., Tabb, A., Medeiros, H.: Multispecies fruit flower detection using a refined semantic segmentation network. IEEE Robot. Autom. Lett. 3(4), 3003–3010 (2018)

    Article  Google Scholar 

  11. Dias, P.A., Medeiros, H.: Semantic segmentation refinement by Monte Carlo region growing of high confidence detections. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11362, pp. 131–146. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20890-5_9

    Chapter  Google Scholar 

  12. Dutta, A., Zisserman, A.: The VGG image annotator (VIA). arXiv preprint arXiv:1904.10699 (2019)

  13. Fan, S., et al.: On line detection of defective apples using computer vision system combined with deep learning methods. J. Food Eng. 286, 110102 (2020)

    Article  Google Scholar 

  14. Gonzalez, S., Arellano, C., Tapia, J.E.: Deepblueberry: quantification of blueberries in the wild using instance segmentation. IEEE Access 7, 105776–105788 (2019)

    Article  Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  16. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958. IEEE (2009)

    Google Scholar 

  17. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Article  Google Scholar 

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Nachtigall, L.G., Araujo, R.M., Nachtigall, G.R.: Use of images of leaves and fruits of apple trees for automatic identification of symptoms of diseases and nutritional disorders. Int. J. Monit. Surveill. Technol. Res. (IJMSTR) 5(2), 1–14 (2017)

    Google Scholar 

  20. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  21. Ramcharan, A., et al.: Assessing a mobile-based deep learning model for plant disease surveillance. arXiv preprint arXiv:1805.08692 (2018)

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Shi, J., Zhou, Y., Zhang, W.X.Q.: Target detection based on improved mask RCNN in service robot. In: 2019 Chinese Control Conference (CCC), pp. 8519–8524. IEEE (2019)

    Google Scholar 

  25. Sujatha, P.K., Sandhya, J., Chaitanya, J.S., Subashini, R.: Enhancement of segmentation and feature fusion for apple disease classification. In: 2018 Tenth International Conference on Advanced Computing (ICoAC), pp. 175–181. IEEE (2018)

    Google Scholar 

  26. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Edital Universal 407780/2016-5) and by the Coordenaçño de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Finance Code 001). We also gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramásio Ferreira de Melo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Melo, R.F. et al. (2020). Diagnosis of Apple Fruit Diseases in the Wild with Mask R-CNN. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics