Skip to main content

Unsupervised Learning Method for Encoder-Decoder-Based Image Restoration

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2020)

Abstract

The restoration of a corrupted image is a challenge to computer vision and image processing. In hazy, underwater and medical images, the lack of paired images lead the state of the art to synthesize datasets. The Generative Adversarial Networks (GANs) are widely used in these cases. However, computational cost and training instability are current concerns. We present an unsupervised learning algorithm that does not requires paired dataset to train encoder-decoder-like neural network for image restoration. An encoder-decoder learn to represent its input data in a latent representation and reconstruct then in the output. During the training stage, our algorithm applies the encoder-decoder output image to a degradation block that reinforces its degradation. The degraded and input images are matched using a loss function. After the training process, we obtain a restored image from the decoder. We used ill-exposed images to evaluate and validate our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar, S., Barnes, N., Petersson, L.: Attention prior for real image restoration. arXiv:2004.13524v1 [cs.CV], April 2020

  2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: IEEE CVPR, pp. 97–104, July 2011. https://doi.org/10.1109/CVPR.2011.5995413

  3. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. 1 (2018). https://doi.org/10.1109/TIP.2018.2794218

  4. Charte, D., Charte, F., García, S., Del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96 (2018). https://doi.org/10.1016/j.inffus.2017.12.007

    Article  Google Scholar 

  5. Chen, Y., Zhang, M., Bai, M., Chen, W.: Improving the signal-to-noise ratio of seismological datasets by unsupervised machine learning. Seismol. Res. Lett. (2019). https://doi.org/10.1785/0220190028

  6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  7. Dong, Y., Liu, Y., Zhang, H., Chen, S., Qiao, Y.: FD-GAN: generative adversarial networks with fusion-discriminator for single image dehazing. In: AAAI, pp. 10729–10736 (2020)

    Google Scholar 

  8. Du, W., Chen, H., Yang, H.: Learning invariant representation for unsupervised image restoration. arXiv:2003.12769v1, March 2020

  9. Fabbri, C., Islam, M.J., Sattar, J.: Enhancing underwater imagery using generative adversarial networks. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 7159–7165 (2018)

    Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. Proc. Track 9, 249–256 (2010)

    Google Scholar 

  11. Gonçalves, L.T., Gaya, J.F.O., Drews-Jr, P.L.J., Botelho, S.S.C.: GuidedNet: single image dehazing using an end-to-end convolutional neural network. In: Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 79–86 (2018)

    Google Scholar 

  12. Hashisho, Y., Albadawi, M., Krause, T., von Lukas, U.F.: Underwater color restoration using u-net denoising autoencoder. In: 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 117–122 (2019)

    Google Scholar 

  13. Liu, J., Sun, Y., Eldeniz, C., Gan, W., An, H., Kamilov, U.S.: RARE: image reconstruction using deep priors learned without ground truth. IEEE J. Sel. Top. Sign. Proces. 14(6), 1–1 (2020)

    Article  Google Scholar 

  14. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are GANs created equal? a large-scale study. arXiv:1711.10337v4 (11 2018)

  15. Mei, Y., et al.: Pyramid attention networks for image restoration. arXiv:2004.13824v1 [cs.CV] (04 2020)

  16. Michelashvili, M., Wolf, L.: Audio denoising with deep network priors. arXiv:1904.07612v2, April 2019

  17. Prakash, M., Lalit, M., Tomancak, P., Krull, A., Jug, F.: Fully unsupervised probabilistic noise2void. arXiv:1911.12291v2 [eess.IV], November 2019

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. ArXiv abs/1505.04597 (2015)

    Google Scholar 

  19. Ruiz-del-Solar, J., Loncomilla, P., Soto, N.: A survey on deep learning methods for robot vision. CoRR abs/1803.10862 (2018). http://arxiv.org/abs/1803.10862

  20. Sharma, G., Wu, W., Dalal, E.: The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30, 21–30 (2005). https://doi.org/10.1002/col.20070

    Article  Google Scholar 

  21. Steffens, C.R., Drews-Jr, P.L.J., Botelho, S.S.C.: Deep learning based exposure correction for image exposure correction with application in computer vision for robotics. In: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), pp. 194–200 (2018)

    Google Scholar 

  22. Steffens, C.R., Messias, L.R.V., Drews-Jr, P.L.J., Botelho, S.S.C.: Can exposure, noise and compression affect image recognition? an assessment of the impacts on state-of-the-art convnets. In: 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education (WRE), pp. 61–66 (2019)

    Google Scholar 

  23. Steffens, C.R., Messias, L.R.V., Drews-Jr, P.L.J., Botelho, S.S.C.: CNN based image restoration: adjusting ill-exposed srgb images in post-processing. J. Intell. Roboti. Syst. 99, 609–627 (2020)

    Article  Google Scholar 

  24. Wang, N., Zhou, Y., Han, F., Zhu, H., Zheng, Y.: UWGAN: underwater GAN for real-world underwater color restoration and dehazing. arXiv preprint arXiv:1912.10269 (2019)

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Wu, D., Gong, K., Kim, K., Li, X., Li, Q.: Consensus neural network for medical imaging denoising with only noisy training samples. arXiv:1906:03639v1 (06 2019)

  27. Xue, W., Zhang, L., Mou, X., Bovik, A.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23 (2013). https://doi.org/10.1109/TIP.2013.2293423

  28. Zhang, H.-M., Dong, B.: A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. Chin. 8(2), 311–340 (2020). https://doi.org/10.1007/s40305-019-00287-4

    Article  MathSciNet  Google Scholar 

  29. Zhang, L., Zhang, L., Mou, X.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011). https://doi.org/10.1109/TIP.2011.2109730

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhou, Y., Wang, J., Li, B., Meng, Q., Rocco, E., Saiani, A.: Underwater scene segmentation by deep neural network. In: UK-RAS19 Conference: Embedded Intelligence: Enabling & Supporting RAS Technologies, pp. 44–47, January 2019. https://doi.org/10.31256/UKRAS19.12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio D. Mello Jr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mello, C.D., Messias, L.R.V., Drews-Jr, P.L.J., Botelho, S.S.C. (2020). Unsupervised Learning Method for Encoder-Decoder-Based Image Restoration. In: Cerri, R., Prati, R.C. (eds) Intelligent Systems. BRACIS 2020. Lecture Notes in Computer Science(), vol 12319. Springer, Cham. https://doi.org/10.1007/978-3-030-61377-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61377-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61376-1

  • Online ISBN: 978-3-030-61377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics