Abstract
The conjugate gradient (CG) algorithm is a method for learning neural networks. The highest computational load in this method is directional minimization. In this paper a new modification of the conjugate gradient algorithm is presented. The proposed solution speeds up the directional minimization, which result in a significant reduction of the calculation time. This modification of the CG algorithm was tested on selected examples. The performance of our method and the classic CG method was compared.
This work has been supported by the Polish National Science Center under Grant 2017/27/B/ST6/02852 and the program of the Polish Minister of Sciencea and higher Education under the name “Regional Initiative of Excellence” in the years 2019–2022 project number 020/RID/2018/19, the amount of financing PLN 12,000,000.00.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Z., Cao, J., Cai, Z., Rutkowski, L.: Anti-synchronization in fixed time for discontinuous reaction-diffusion neural networks with time-varying coefficients and time delay. IEEE Trans. Cybern. 50(6), 2758–2769 (2020). https://doi.org/10.1109/TCYB.2019.2913200
Duda, P., Rutkowski, L., Jaworski, M., Rutkowska, D.: On the Parzen Kernel-based probability density function learning procedures over time-varying streaming data with applications to pattern classification. IEEE Trans. Cybern. 50(4), 1683–1696 (2020). https://doi.org/10.1109/TCYB.2018.2877611
Lin, L., Cao, J., Rutkowski, L.: Robust event-triggered control invariance of probabilistic Boolean control networks. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 1060–1065 (2020). https://doi.org/10.1109/TNNLS.2019.2917753
Liu, Y., Zheng, Y., Lu, J., Cao, J., Rutkowski, L.: Constrained quaternion-variable convex optimization: a quaternion-valued recurrent neural network approach. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 1022–1035 (2020). https://doi.org/10.1109/TNNLS.2019.2916597
Gabryel, M., Przybyszewski, K.: The dynamically modified BoW algorithm used in assessing clicks in online ads. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11509, pp. 350–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20915-5_32
Gabryel, M.: The bag-of-words method with different types of image features and dictionary analysis. J. Univ. Comput. Sci. 24(4), 357–371 (2018)
Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20, 687–700 (2017)
Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_20
Zalasiński, M., Cpałka, K., Er, M.J.: New method for dynamic signature verification using hybrid partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 216–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_20
Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 91–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_9
Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A content-based recommendation system using neuro-fuzzy approach. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2018)
Rutkowski, T., Łapa, K., Nowicki, R., Nielek, R., Grzanek, K.: On explainable recommender systems based on fuzzy rule generation techniques. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 358–372. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_34
Rutkowski, L.: Computational Intelligence. Methods and Techniques. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1
Liao, J., Liu, T., Liu, M., Wang, J., Wang, Y., Sun, H.: Multi-context integrated deep neural network model for next location prediction. IEEE Access 6, 21980–21990 (2018)
Akdeniz, E., Egrioglu, E., Bas, E., Yolcu, U.: An ARMA type pi-sigma artificial neural network for nonlinear time series forecasting. J. Artif. Intell. Soft Comput. Res. 8(2), 121–132 (2017)
Nobukawa, S., Nishimura, H., Yamanishi, T.: Pattern classification by spiking neural networks combining self-organized and reward-related spike-timing-dependent plasticity. J. Artif. Intell. Soft Comput. Res. 9(4), 283–291 (2019)
de Souza, G.B., da Silva Santos, D.F., Pires, R.G., Marananil, A.N., Papa, J.P.: Deep features extraction for robust fingerprint spoofing attack detection. J. Artif. Intell. Soft Comput. Res. 9(1), 41–49 (2019)
Bilski, J.: The UD RLS algorithm for training the feedforward neural networks. Int. J. Appl. Math. Comput. Sci. 15(1), 101–109 (2005)
Rumelhart D.E., Hinton G.E., Williams R.J.: Learning internal representations by error propagation. In: Rumelhart, E., McCelland, J., (eds.) Parallel Distributed Processing, vol. 1, chap. 8. The MIT Press, Cambridge (1986)
Wilamowski, B.M., Yo, H.: Neural network learning without backpropagation. IEEE Trans. Neural Netw. 21(11), 1793–1803 (2010)
Bilski, J., Kowalczyk, B., Marchlewska, A., Zurada, J.M.: Local Levenberg-Marquardt algorithm for learning feedforwad neural networks. J. Artif. Intell. Soft Comput. Res. 10(4), 299–316 (2020). https://doi.org/10.2478/jaiscr-2020-0020
Żurada, J.: Introduction to Artificial Neural Systems. West Publishing Co., Eagan (1992)
Liu, J.-B., Zhao, J., Wang, S., Javaid, M., Cao, J.: On the topological properties of the certain neural networks. J. Artif. Intell. Soft Comput. Res. 8(4), 257–268 (2018)
Shewalkar, A., Nyavanandi, D., Ludwig, S., A.: Performance evaluation of deep neural networks applied to speech recognition: RNN, LSTM AND GRU. J. Artif. Intell. Soft Comput. Res. 9(4), 235–245 (2019)
Ludwig, S.A.: Applying a neural network ensemble to intrusion detection. J. Artif. Intell. Soft Comput. Res. 9(3), 177–188 (2019)
Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24844-6_19
Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent RTRN neural network learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69731-2_2
Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent Elman neural network learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6114, pp. 19–25. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13232-2_3
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 12–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4_2
Bilski, J., Smoląg, J.: Parallel realisation of the recurrent multi layer perceptron learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS (LNAI), vol. 7267, pp. 12–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29347-4_2
Bilski, J., Wilamowski, B.M.: Parallel Levenberg-Marquardt algorithm without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 25–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_3
Smoląg, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Tenne, Y., Goh, C.K., (eds.) Proceedings of V Conference on Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)
Smoląg, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proceedings of IV Conference on Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)
Fahlman S.: Faster learning variations on backpropagation: an empirical study. In: Proceedings of Connectionist Models Summer School, Los Atos (1988)
Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)
Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning: the RPROP algorithm. In: IEEE International Conference on Neural Networks, San Francisco (1993)
Werbos, J.: Backpropagation through time: what it does and how to do it. In: Proceedings of the IEEE, vol. 78, p. 10 (1990)
Charalambous, C.: Conjugate gradient algorithm for efficient training of artificial neural networks. IEE Proc. G Circuits Devices Syst. 139(3), 301–310 (1992)
Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963)
Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964)
Nocedal, J., Wright, S.J.: Conjugate Gradient Methods in Numerical Optimization, pp. 497–528. Springer, New York (2006)
Polak, E.: Computational Methods in Optimization: A Unified Approach. Academic Press, New York (1971)
Navi, N.M.F., Ransing, M.R., Ransing, R.S.: An improved learning algorithm based on the conjugate gradient method for back propagation neural networks. Int. J. Comput. Inf. Eng. 2(8), 2770–2774 (2008)
Jin, X.-B., Zhang, X.-Y., Huang, K., Geng, G.-G.: Stochastic conjugate gradient algorithm with variance reduction. IEEE Trans. Neural Netw. Learn. Syst. 30(5), 1360–1369 (2019)
Rafajłowicz, E., Rafajłowicz, W.: Iterative learning in optimal control of linear dynamic processes. Int. J. Control 91(7), 1522–1540 (2018)
Rafajłowicz, E., Rafajłowicz, W.: Iterative learning in repetitive optimal control of linear dynamic processes. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 705–717. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_60
Jurewicz, P., Rafajłowicz, W., Reiner, J., Rafajłowicz, E.: Simulations for tuning a laser power control system of the cladding process. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 218–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45378-1_20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bilski, J., Smoląg, J. (2020). Fast Conjugate Gradient Algorithm for Feedforward Neural Networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-61401-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61400-3
Online ISBN: 978-3-030-61401-0
eBook Packages: Computer ScienceComputer Science (R0)