Abstract
Algorithms based on populations are a very popular family of methods for solving optimization problems. One of the more frequently used representatives of this group is the Particle Swarm Optimization algorithm. The social learning mechanism used in the Particle Swarm Optimization algorithm allows this method to converge quickly. However, it can lead to catching the swarm in the local optimum. The solution to this issue may be the use of genetic operators whose random nature allows them to leave this point. The degree of use of these operators can be controlled using a neuro-fuzzy system. Such a mechanism exists in the FSHPSO-E algorithm presented in our previous paper. To test it, we used the set of benchmark functions widely adapted in the literature. The results proved effectiveness, efficiency, and scalability of this solution. In this paper, we show the effectiveness of this method in solving practical problems of optimization of fuzzy-neural systems used to model non-linear dynamic objects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Basset, M., Fakhry, A.E., El-Henawy, I., Qiu, T., Sangaiah, A.K.: Feature and intensity based medical image registration using particle swarm optimization. J. Med. Syst. 41(12), 197 (2017)
Babu, T.S., Ram, J.P., Dragičević, T., Miyatake, M., Blaabjerg, F., Rajasekar, N.: Particle swarm optimization based solar pv array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans. Sust. Energy 9(1), 74–85 (2017)
Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)
Benedetti, M., Azaro, R., Massa, A.: Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios. IEEE Trans. Ant. Prop. 56(7), 1939–1947 (2008)
Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)
Delgarm, N., Sajadi, B., Kowsary, F., Delgarm, S.: Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (pso). Appl. Energy 170, 293–303 (2016)
Dziwiński, P., Bartczuk, Ł., Goetzen, P.: A new hybrid particle swarm optimization and evolutionary algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 432–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_40
Dziwiński, P., Bartczuk, Ł.: A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic. IEEE Trans. Fuzzy Syst. 28, 1140–1154 (2019)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE (1995)
Ferdaus, M.M., Anavatti, S.G., Garratt, M.A., Pratama, M.: Development of c-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. J. Artif. Intell. Soft Comput. Res. 9(2), 99–109 (2019)
Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016)
Goldberg, D.E.: Genetic Algorithms. Pearson Education India (2006)
Jordan, A.J.: Linearization of non-linear state equation. Bull. Polish Acad. Sci. Tech. Sci. 54(1), 63–73 (2006)
Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. 34(2), 997–1006 (2004)
Jurewicz, P., Rafajłowicz, W., Reiner, J., Rafajłowicz, E.: Simulations for tuning a laser power control system of the cladding process. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 218–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45378-1_20
Ono, M.K.K., Hanada, Y., Kimura, M.: Enhancing island model genetic programming by controlling frequent trees. J. Artif. Intell. Soft Comput. Res. 9(1), 51–65 (2019)
Kramer, O.: Genetic Algorithm Essentials. SCI, vol. 679. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52156-5
Krell, E., Sheta, A., Balasubramanian, A.P.R., King, S.A.: Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning. J. Artif. Intell. Soft Comput. Res. 9(4), 267–282 (2019)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Malchiodi, D., Pedrycz, W.: Learning membership functions for fuzzy sets through modified support vector clustering. In: Masulli, F., Pasi, G., Yager, R. (eds.) WILF 2013. LNCS (LNAI), vol. 8256, pp. 52–59. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03200-9_6
Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)
Nasim, A., Burattini, L., Fateh, M.F., Zameer, A.: Solution of linear and non-linear boundary value problems using population-distributed parallel differential evolution. J. Artif. Intelli. Soft Comput. Res. 9(3), 205–218 (2019)
Pare, S., Kumar, A., Bajaj, V., Singh, G.K.: A context sensitive multilevel thresholding using swarm based algorithms. IEEE/CAA J. Autom. Sinica 6, 1471–1486 (2017)
Rafajłowicz, E., Rafajłowicz, W.: Fletcher’s filter methodology as a soft selector in evolutionary algorithms for constrained optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 333–341. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29353-5_39
Rafajłowicz, E., Rafajłowicz, W.: Iterative learning in repetitive optimal control of linear dynamic processes. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 705–717. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_60
Rafajłowicz, E., Rafajłowicz, W.: Iterative learning in optimal control of linear dynamic processes. Int. J. Control 91(7), 1522–1540 (2018)
Rafajłowicz, W.: Method of handling constraints in differential evolution using fletcher’s filter. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 46–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_5
Rutkowski, T., Łapa, K., Nielek, R.: On explainable fuzzy recommenders and their performance evaluation. Int. J. Appl. Math. Comput. Sci. 29(3), 595–610 (2019)
Rutkowski, T., Łapa, K., Nowicki, R., Nielek, R., Grzanek, K.: On explainable recommender systems based on fuzzy rule generation techniques. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 358–372. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_34
Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y.: Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. J. Artif. Intell. Soft Comput. Res. 8(2), 103–110 (2018)
Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computer Proceedings, pp. 69–73. IEEE (1998)
Slowik, A., Cpałka, K., Łapa, K.: Multi-population nature-inspired algorithm (mnia) for the designing of interpretable fuzzy systems. IEEE Trans. Fuzzy Syst. 28, 1125–1139 (2019)
Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 224–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7_29
Subbulakshmi, C.V., Deepa, S.N.: Medical dataset classification: a machine learning paradigm integrating particle swarm optimization with extreme learning machine classifier. Sci. World J. (2015)
Tambouratzis, G.: Using particle swarm optimization to accurately identify syntactic phrases in free text. J. Artif. Intell. Soft Comput. Res. 8(1), 63–67 (2018)
Tambouratzis, G., Vassiliou, M.: Swarm algorithms for NLP - the case of limited training data. J. Artif. Intell. Soft Comput. Res. 9(3), 219–234 (2019)
Wang, X.: Corporate financial warning model based on PSO and SVM. In: 2010 2nd International Conference on Information Engineering and Computer Science, pp. 1–5 (2010)
Wei, Y., et al.: Vehicle emission computation through microscopic traffic simulation calibrated using genetic algorithm. J. Artif. Intell. Soft Comput. Res. 9(1), 67–80 (2019)
Zhang, F., Fan, W., Wu, X., Pedersen, G.F.: Performance testing of mimo device with the wireless cable method based on particle swarm optimization algorithm. In: 2018 International Workshop on Antenna Technology (iWAT), pp. 1–4. IEEE (2018)
Zhu, H., Wang, Y., Wang, K., Chen, Y.: Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Exp. Syst. Appl. 38(8), 10161–10169 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bartczuk, Ł., Dziwiński, P., Goetzen, P. (2020). Nonlinear Fuzzy Modelling of Dynamic Objects with Fuzzy Hybrid Particle Swarm Optimization and Genetic Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-61401-0_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61400-3
Online ISBN: 978-3-030-61401-0
eBook Packages: Computer ScienceComputer Science (R0)