Skip to main content

Nonlinear Fuzzy Modelling of Dynamic Objects with Fuzzy Hybrid Particle Swarm Optimization and Genetic Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12415))

Included in the following conference series:

  • 2061 Accesses

Abstract

Algorithms based on populations are a very popular family of methods for solving optimization problems. One of the more frequently used representatives of this group is the Particle Swarm Optimization algorithm. The social learning mechanism used in the Particle Swarm Optimization algorithm allows this method to converge quickly. However, it can lead to catching the swarm in the local optimum. The solution to this issue may be the use of genetic operators whose random nature allows them to leave this point. The degree of use of these operators can be controlled using a neuro-fuzzy system. Such a mechanism exists in the FSHPSO-E algorithm presented in our previous paper. To test it, we used the set of benchmark functions widely adapted in the literature. The results proved effectiveness, efficiency, and scalability of this solution. In this paper, we show the effectiveness of this method in solving practical problems of optimization of fuzzy-neural systems used to model non-linear dynamic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdel-Basset, M., Fakhry, A.E., El-Henawy, I., Qiu, T., Sangaiah, A.K.: Feature and intensity based medical image registration using particle swarm optimization. J. Med. Syst. 41(12), 197 (2017)

    Article  Google Scholar 

  2. Babu, T.S., Ram, J.P., Dragičević, T., Miyatake, M., Blaabjerg, F., Rajasekar, N.: Particle swarm optimization based solar pv array reconfiguration of the maximum power extraction under partial shading conditions. IEEE Trans. Sust. Energy 9(1), 74–85 (2017)

    Article  Google Scholar 

  3. Bartczuk, Ł., Przybył, A., Cpałka, K.: A new approach to nonlinear modelling of dynamic systems based on fuzzy rules. Int. J. Appl. Math. Comput. Sci. 26(3), 603–621 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetti, M., Azaro, R., Massa, A.: Memory enhanced PSO-based optimization approach for smart antennas control in complex interference scenarios. IEEE Trans. Ant. Prop. 56(7), 1939–1947 (2008)

    Article  Google Scholar 

  5. Cpałka, K., Łapa, K., Przybył, A., Zalasiński, M.: A new method for designing neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neurocomputing 135, 203–217 (2014)

    Article  Google Scholar 

  6. Delgarm, N., Sajadi, B., Kowsary, F., Delgarm, S.: Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (pso). Appl. Energy 170, 293–303 (2016)

    Article  Google Scholar 

  7. Dziwiński, P., Bartczuk, Ł., Goetzen, P.: A new hybrid particle swarm optimization and evolutionary algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 432–444. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_40

    Chapter  Google Scholar 

  8. Dziwiński, P., Bartczuk, Ł.: A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic. IEEE Trans. Fuzzy Syst. 28, 1140–1154 (2019)

    Article  Google Scholar 

  9. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43. IEEE (1995)

    Google Scholar 

  10. Ferdaus, M.M., Anavatti, S.G., Garratt, M.A., Pratama, M.: Development of c-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. J. Artif. Intell. Soft Comput. Res. 9(2), 99–109 (2019)

    Article  Google Scholar 

  11. Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms. Pearson Education India (2006)

    Google Scholar 

  13. Jordan, A.J.: Linearization of non-linear state equation. Bull. Polish Acad. Sci. Tech. Sci. 54(1), 63–73 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. 34(2), 997–1006 (2004)

    Article  Google Scholar 

  15. Jurewicz, P., Rafajłowicz, W., Reiner, J., Rafajłowicz, E.: Simulations for tuning a laser power control system of the cladding process. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 218–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45378-1_20

    Chapter  Google Scholar 

  16. Ono, M.K.K., Hanada, Y., Kimura, M.: Enhancing island model genetic programming by controlling frequent trees. J. Artif. Intell. Soft Comput. Res. 9(1), 51–65 (2019)

    Article  Google Scholar 

  17. Kramer, O.: Genetic Algorithm Essentials. SCI, vol. 679. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52156-5

  18. Krell, E., Sheta, A., Balasubramanian, A.P.R., King, S.A.: Collision-free autonomous robot navigation in unknown environments utilizing PSO for path planning. J. Artif. Intell. Soft Comput. Res. 9(4), 267–282 (2019)

    Article  Google Scholar 

  19. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  20. Malchiodi, D., Pedrycz, W.: Learning membership functions for fuzzy sets through modified support vector clustering. In: Masulli, F., Pasi, G., Yager, R. (eds.) WILF 2013. LNCS (LNAI), vol. 8256, pp. 52–59. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03200-9_6

    Chapter  MATH  Google Scholar 

  21. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  22. Nasim, A., Burattini, L., Fateh, M.F., Zameer, A.: Solution of linear and non-linear boundary value problems using population-distributed parallel differential evolution. J. Artif. Intelli. Soft Comput. Res. 9(3), 205–218 (2019)

    Article  Google Scholar 

  23. Pare, S., Kumar, A., Bajaj, V., Singh, G.K.: A context sensitive multilevel thresholding using swarm based algorithms. IEEE/CAA J. Autom. Sinica 6, 1471–1486 (2017)

    MathSciNet  Google Scholar 

  24. Rafajłowicz, E., Rafajłowicz, W.: Fletcher’s filter methodology as a soft selector in evolutionary algorithms for constrained optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 333–341. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29353-5_39

    Chapter  MATH  Google Scholar 

  25. Rafajłowicz, E., Rafajłowicz, W.: Iterative learning in repetitive optimal control of linear dynamic processes. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9692, pp. 705–717. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_60

    Chapter  Google Scholar 

  26. Rafajłowicz, E., Rafajłowicz, W.: Iterative learning in optimal control of linear dynamic processes. Int. J. Control 91(7), 1522–1540 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rafajłowicz, W.: Method of handling constraints in differential evolution using fletcher’s filter. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 46–55. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7_5

    Chapter  Google Scholar 

  28. Rutkowski, T., Łapa, K., Nielek, R.: On explainable fuzzy recommenders and their performance evaluation. Int. J. Appl. Math. Comput. Sci. 29(3), 595–610 (2019)

    Article  MATH  Google Scholar 

  29. Rutkowski, T., Łapa, K., Nowicki, R., Nielek, R., Grzanek, K.: On explainable recommender systems based on fuzzy rule generation techniques. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 358–372. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20912-4_34

    Chapter  Google Scholar 

  30. Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y.: Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. J. Artif. Intell. Soft Comput. Res. 8(2), 103–110 (2018)

    Article  Google Scholar 

  31. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computer Proceedings, pp. 69–73. IEEE (1998)

    Google Scholar 

  32. Slowik, A., Cpałka, K., Łapa, K.: Multi-population nature-inspired algorithm (mnia) for the designing of interpretable fuzzy systems. IEEE Trans. Fuzzy Syst. 28, 1125–1139 (2019)

    Article  Google Scholar 

  33. Starczewski, J.T., Bartczuk, Ł., Dziwiński, P., Marvuglia, A.: Learning methods for type-2 FLS based on FCM. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 224–231. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13208-7_29

    Chapter  Google Scholar 

  34. Subbulakshmi, C.V., Deepa, S.N.: Medical dataset classification: a machine learning paradigm integrating particle swarm optimization with extreme learning machine classifier. Sci. World J. (2015)

    Google Scholar 

  35. Tambouratzis, G.: Using particle swarm optimization to accurately identify syntactic phrases in free text. J. Artif. Intell. Soft Comput. Res. 8(1), 63–67 (2018)

    Article  Google Scholar 

  36. Tambouratzis, G., Vassiliou, M.: Swarm algorithms for NLP - the case of limited training data. J. Artif. Intell. Soft Comput. Res. 9(3), 219–234 (2019)

    Article  Google Scholar 

  37. Wang, X.: Corporate financial warning model based on PSO and SVM. In: 2010 2nd International Conference on Information Engineering and Computer Science, pp. 1–5 (2010)

    Google Scholar 

  38. Wei, Y., et al.: Vehicle emission computation through microscopic traffic simulation calibrated using genetic algorithm. J. Artif. Intell. Soft Comput. Res. 9(1), 67–80 (2019)

    Article  Google Scholar 

  39. Zhang, F., Fan, W., Wu, X., Pedersen, G.F.: Performance testing of mimo device with the wireless cable method based on particle swarm optimization algorithm. In: 2018 International Workshop on Antenna Technology (iWAT), pp. 1–4. IEEE (2018)

    Google Scholar 

  40. Zhu, H., Wang, Y., Wang, K., Chen, Y.: Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Exp. Syst. Appl. 38(8), 10161–10169 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Bartczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartczuk, Ł., Dziwiński, P., Goetzen, P. (2020). Nonlinear Fuzzy Modelling of Dynamic Objects with Fuzzy Hybrid Particle Swarm Optimization and Genetic Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics