Skip to main content

Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2020)

Abstract

Select from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work [22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alrawashdeh, K.: Toward a hardware-assisted online intrusion detection system based on deep learning algorithms for resource-limited embedded systems. Doctoral dissertation, University of Cincinnati (2018)

    Google Scholar 

  2. Alrawashdeh, K., Purdy, C.: Reducing calculation requirements in FPGA implementation of deep learning algorithms for online anomaly intrusion detection. In: IEEE National Aerospace and Electronics Conference, pp. 57–62. IEEE (2017)

    Google Scholar 

  3. Altmann, A., Tolosi, L., Sander, O., Lengauer, T.: Permutation importance: a corrected feature importance measure. Bioinformatics 26(10), 1340–1347 (2010)

    Article  Google Scholar 

  4. Barga, R., Fontama, V., Tok, W.H., Cabrera-Cordon, L.: Predictive Analytics with Microsoft Azure Machine Learning. Apress, Berkely (2015)

    Book  Google Scholar 

  5. Bleik, S.: Permutation Feature Importance. https://blogs.technet.microsoft.com/machinelearning/2015/04/14/permutation-feature-importance. Accessed 3 Dec 2019

  6. Chapaneri, R., Shah, S.: A comprehensive survey of machine learning-based network intrusion detection. In: Satapathy, S.C., Bhateja, V., Das, S. (eds.) Smart Intelligent Computing and Applications. SIST, vol. 104, pp. 345–356. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1921-1_35

    Chapter  Google Scholar 

  7. Etaati, L.: Azure machine learning studio. In: Machine Learning with Microsoft Technologies, pp. 201–223. Apress, Berkeley (2019)

    Google Scholar 

  8. Giménez, C.T., Villegas, A.P., Marañón, G.Á.: HTTP data set CSIC 2010. Information Security Institute of CSIC, Spanish Research National Council (2010)

    Google Scholar 

  9. Go, W., Lee, D.: Toward trustworthy deep learning in security. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 2219–2221. ACM (2018)

    Google Scholar 

  10. Han, E.: Analyzing and classifying web application attacks. Int. J. Adv. Electron. Comput. Sci. 2(4) (2015)

    Google Scholar 

  11. Kaur, S., Singh, M.G.: Network Security Model for Attack Signature Generation, Tracking and Analysis. Doctoral dissertation (2015)

    Google Scholar 

  12. Kozik, R., Choraś, M., Renk, R., Hołubowicz, W.: A proposal of algorithm for web applications cyber attack detection. In: Saeed, K., Snášel, V. (eds.) CISIM 2014. LNCS, vol. 8838, pp. 680–687. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45237-0_61

    Chapter  Google Scholar 

  13. Maini, R., Bvducoep, P., Pandey, R., Kumar, R., Gupta, R.: Automated web vulnerability scanner. Int. J. Eng. Appl. Sci. Technol. 4(1), 132–136 (2019). ISSN 2455-2143

    Google Scholar 

  14. Nguyen, H.T., Torrano-Gimenez, C., Alvarez, G., Petrović, S., Franke, K.: Application of the generic feature selection measure in detection of web attacks. In: Herrero, Á., Corchado, E. (eds.) CISIS 2011. LNCS, vol. 6694, pp. 25–32. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21323-6_4

    Chapter  Google Scholar 

  15. Owasp Foundation: OWASP Top 10 Application Security Risks 2017. https://www.owasp.org/index.php/Top_10-2017_Top_10. Accessed 1 Dec 2019

  16. Parthy, P.P., Rajendran, G.: Identification and prevention of social engineering attacks on an enterprise. In: 2019 International Carnahan Conference on Security Technology (ICCST), pp. 1–5. IEEE (2019)

    Google Scholar 

  17. Perez-Villegas, A., Torrano-Gimenez, C., Alvarez, G.: Applying Markov chains to web intrusion detection. In: Proceedings of Reunión Espanola sobre Criptología y Seguridad de la Información (RECSI 2010), pp. 361–366 (2010)

    Google Scholar 

  18. Radovic, M., Ghalwash, M., Filipovic, N., Obradovic, Z.: Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics 18(1), 9 (2017)

    Article  Google Scholar 

  19. Masud Rana, Md., Ahmed, K.: Feature selection and biomedical signal classification using minimum redundancy maximum relevance and artificial neural network. In: Uddin, M.S., Bansal, J.C. (eds.) Proceedings of International Joint Conference on Computational Intelligence. AIS, pp. 207–214. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7564-4_18

  20. Ren, J., Zheng, Z., Liu, Q., Wei, Z., Yan, H.: A buffer overflow prediction approach based on software metrics and machine learning. Secur. Commun. Netw. (2019)

    Google Scholar 

  21. Rodríguez, G.E., Torres, J.G., Flores, P., Benavides, D.E.: Cross-site scripting (XSS) attacks and mitigation: a survey. Comput. Netw. 1666, 106960 (2019)

    Google Scholar 

  22. Smitha, R., Hareesha, K.S., Kundapur, P.P.: A machine learning approach for web intrusion detection: MAMLS perspective. In: Wang, J., Reddy, G.R.M., Prasad, V.K., Reddy, V.S. (eds.) Soft Computing and Signal Processing. AISC, vol. 900, pp. 119–133. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3600-3_12

    Chapter  Google Scholar 

  23. Symantec Internet Security Threat Report. https://www.symantec.com/content /dam/symantec/docs/reports/istr-24-2019-en.pdf. Accessed 30 Nov 2019

  24. Torrano-Giménez, C., Perez-Villegas, A., Alvarez, G.: An anomaly-based approach for intrusion detection in web traffic (2010)

    Google Scholar 

  25. Torrano-Gimenez, C., Perez-Villegas, A., Alvarez, G.: A self-learning anomaly-based web application firewall. In: Herrero, Á., Gastaldo, P., Zunino, R., Corchado, E. (eds.) Computational Intelligence in Security for Information Systems. Advances in Intelligent and Soft Computing, vol. 63, pp. 85–92. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04091-7_11

    Chapter  Google Scholar 

  26. Torrano-Gimenez, C., Péerez-Villegas, A., Álvarez, G., Fernández-Medina, E., Malek, M., Hernando, J.: An anomaly-based web application firewall. In: SECRYPT, pp. 23–28 (2009)

    Google Scholar 

  27. Torrano-Gimenez, C., Nguyen, H.T., Alvarez, G., Petrovic, S., Franke, K.: Applying feature selection to payload-based web application firewalls. In: International Workshop on Security and Communication Networks, pp. 75–81. IEEE (2011)

    Google Scholar 

  28. Wang, B., Gong, N.Z.: Stealing hyperparameters in machine learning. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 36–52. IEEE (2018)

    Google Scholar 

  29. Zhang, H., Zhao, B., Yuan, H., Zhao, J., Yan, X., Li, F.: SQL injection detection based on deep belief network. In: Proceedings of the 3rd International Conference on Computer Science and Application Engineering, p. 20. ACM (2019)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to FAPESP grants #2017/22905-6, #2013/07375-0, #2014/12236-1, and #2019/07665-4, as well as CNPq grants #429003/2018-8, #307066/2017-7, and #427968/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelton Augusto Pontara da Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lucas, T.J., Tojeiro, C.A.C., Pires, R.G., da Costa, K.A.P., Papa, J.P. (2020). Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics