Skip to main content

The Utilization of Different Classifiers to Perform Drug Repositioning in Inclusion Body Myositis Supports the Concept of Biological Invariance

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2020)

Abstract

In this research work, we introduce several novel methods to identify the defective pathways in highly uncertain phenotype prediction problems. More specifically, we applied these methodologies for phenotype prediction associated with drug repositioning for rare diseases such as the Inclusion Body Myositis and obtained a better understanding of the disease mechanism. The novelty of our research is based on the fact that the classifiers utilized to build the genetic signatures were based on completely different approaches, namely; gene Fisher ratios, generation of random genetic networks or genetic network likelihoods to sample and relate the altered genes to possible drugs via the connectivity maps. This scheme provides a more effective drug design/repositioning since it helps to understand the disease mechanisms and to establish an optimum mechanism of action of the designed drugs. By comparing the different classifiers, we conclude that the Fisher’s ratio, Holdout and Random Forest samplers are the most effective, since they provide similar insights into the genetic mechanisms of the disease and bear low computational costs. Furthermore, our work supports the concept of Biological Invariance, assuming that the results of the analysis of the altered pathways should be independent of the sampling method utilized for the assessment of the inference. However, the effectiveness of the candidate drugs and the gene targets predicted by our approach should be pre-clinically studied and clinically tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalakas, M.C.: Polymyositis, dermatomyositis, and inclusion-body myositis. New Engl. J. Med. 325(21), 1487–1498 (1991)

    Google Scholar 

  2. Griggs, R.C., et al.: Inclusion body myositis and myopathies. Ann. Neurol. Official J. Am. Neurol. Assoc. Child Neurol. Soc. 38(5), 705–713 (1995)

    Google Scholar 

  3. Ghannam, K., et al.: Upregulation of immunoproteasome subunits in myositis indicates active inflammation with involvement of antigen presenting cells, CD8 T-cells and IFNγ. PLoS One 9(8), e104048 (2014)

    Google Scholar 

  4. Rose, M.R.: 188th ENMC international workshop: inclusion body myositis, 2–4 December 2011, Naarden the Netherlands. Neuromusc. Disord. 23(12), 1044–1055 (2013)

    Google Scholar 

  5. Machado, P., et al.: Lb0002 safety and tolerability of arimoclomol in patients with sporadic inclusion body myositis: a randomized, double-blind, placebo controlled, phase IIa proof-of-concept trial. Ann. Rheum. Dis. 72(Suppl 3), A164–A164 (2013)

    Google Scholar 

  6. Gualano, B., et al.: Resistance training with vascular occlusion in inclusion body myositis: a case study. Med. Sci. Sports Exerc. 42(2), 250–254 (2010)

    Google Scholar 

  7. Prevel, N., Allenbach, Y., Klatzmann, D., Salomon, B., Benveniste, O.: Beneficial role of rapamycin in experimental autoimmune myositis. PLoS One 8(11), e74450 (2013)

    Google Scholar 

  8. Mendell, J.R., et al.: Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes. Mol. Ther. 25(4), 870–879 (2017)

    Google Scholar 

  9. DiMasi, J.A., Grabowski, H.G., Hansen, R.W.: Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016)

    Google Scholar 

  10. Cook, D., et al.: Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nature Rev. Drug Discov. 13(6), 419 (2014)

    Google Scholar 

  11. Scannell, J.W., Blanckley, A., Boldon, H., Warrington, B.: Diagnosing the decline in pharmaceutical R&D efficiency. Nature Rev. Drug Discov. 11(3), 191 (2012)

    Google Scholar 

  12. Álvarez-Machancoses, Ó., Fernández-Martínez, J.L.: Using artificial intelligence methods to speed up drug discovery. Expert Opin. Drug Discov. 14(8), 769–777 (2019)

    Google Scholar 

  13. de Andrés-Galiana, E.J., Fernández-Martínez, J.L., Sonis, S.T.: Design of biomedical robots for phenotype prediction problems. J. Comput. Biol. 23(8), 678–692 (2016)

    Google Scholar 

  14. Cernea, A., et al.: Sampling defective pathways in phenotype prediction problems via the Fisher’s ratio sampler. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 15–23. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_2

    Chapter  Google Scholar 

  15. Fernández-Martínez, J.L., Fernández-Muñoz, Z., Tompkins, M.J.: On the topography of the cost functional in linear and nonlinear inverse problems. Geophysics 77(1), W1–W15 (2012)

    Google Scholar 

  16. Fernández-Martínez, J.L., Fernández-Muñoz, Z., Pallero, J.L.G., Pedruelo-González, L.M.: From Bayes to Tarantola: new insights to understand uncertainty in inverse problems. J. Appl. Geophys. 98, 62–72 (2013)

    Google Scholar 

  17. de Andrés-Galiana, E.J., Fernández-Martínez, J.L., Sonis, S.T.: Sensitivity analysis of gene ranking methods in phenotype prediction. J. Biomed. Inform. 64, 255–264 (2016)

    Google Scholar 

  18. Fernández-Martínez, J.L., et al.: Sampling defective pathways in phenotype prediction problems via the holdout sampler. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 24–32. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_3

    Chapter  Google Scholar 

  19. Cernea, A., et al.: Comparison of different sampling algorithms for phenotype prediction. In: Rojas, I., Ortuño, F. (eds.) IWBBIO 2018. LNCS, vol. 10814, pp. 33–45. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78759-6_4

    Chapter  Google Scholar 

  20. Saligan, L.N., Fernández-Martínez, J.L., de Andrés-Galiana, E.J., Sonis, S.: Supervised classification by filter methods and recursive feature elimination predicts risk of radiotherapy-related fatigue in patients with prostate cancer. Cancer Inform. 13, CIN-S19745 (2014)

    Google Scholar 

  21. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  22. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Google Scholar 

  23. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    MATH  Google Scholar 

  24. Lamb, J.: The connectivity map: a new tool for biomedical research. Nat. Rev. Cancer 7(1), 54 (2007)

    MathSciNet  Google Scholar 

  25. Greenberg, S.A.: Molecular profiles of inflammatory myopathies. Neurology 59(8), 1170–1182 (2002)

    Google Scholar 

  26. Greenberg, S.A.: Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications. Neurology 69(21), 2008–2019 (2007)

    Google Scholar 

  27. Pang, H., et al.: Pathway analysis using random forests classification and regression. Bioinformatics 22(16), 2028–2036 (2006)

    MathSciNet  Google Scholar 

  28. Fernández-Martínez, J.L., Álvarez, Ó., de Andrés-Galiana, E.J., de la Viña, J.F.S., Huergo, L.: Robust sampling of altered pathways for drug repositioning reveals promising novel therapeutics for inclusion body myositis. J Rare Dis. Res. Treat 4(2), 7–15 (2019)

    Google Scholar 

  29. Kürthy, M., et al.: Effect of BRX-220 against peripheral neuropathy and insulin resistance in diabetic rat models. Ann. New York Acad. Sci. 967(1), 482–489 (2002)

    Google Scholar 

  30. McBride, W.G.: Thalidomide and congenital abnormalities. Lancet 278(7216), 1358 (1961). https://doi.org/10.1016/s0140-6736(61)90927-8

    Article  Google Scholar 

  31. Sereda, D., Werth, V.P.: Improvement in dermatomyositis rash associated with the use of antiestrogen medication. Arch. Dermatol. 142(1), 70–72 (2006)

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from NSF grant DBI 1661391, and NIH grant R01 GM127701.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Luis Fernández-Martínez or Andrzej Kloczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Álvarez-Machancoses, Ó., deAndrés-Galiana, E., Fernández-Martínez, J.L., Kloczkowski, A. (2020). The Utilization of Different Classifiers to Perform Drug Repositioning in Inclusion Body Myositis Supports the Concept of Biological Invariance. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61401-0_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61400-3

  • Online ISBN: 978-3-030-61401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics