Skip to main content

Writing Robotics Applications with X-Klaim

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12477))

Abstract

Developing robotics applications is a demanding software engineering challenge. Such a software has to perform multiple cooperating tasks in a well-coordinated manner in order to avoid unsatisfactory behavior. In this paper, we define an approach for developing robot software based on the integration of the programming language X-Klaim and the popular robotics framework ROS. X-Klaim is a programming language specifically devised to design distributed applications consisting of software components interacting through multiple distributed tuple spaces. Advantages of using X-Klaim in the robotics domain derive from its high abstraction level, that allows developers to focus on robots’ behavior, and from its computation and communication model, which is especially suitable for dealing with the distributed nature of robots’ architecture. We show the feasibility and the effectiveness of the proposed approach by implementing a scenario involving a robot looking for potential victims in a disaster area.

The work was supported by the PRIN project “SEDUCE” n. 2017TWRCNB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://github.com/LorenzoBettini/xklaim.

  2. 2.

    https://www.ros.org/.

  3. 3.

    https://github.com/h2r/java_rosbridge.

  4. 4.

    http://gazebosim.org/.

  5. 5.

    For the sake of presentation, we omit from the description of Klaim nodes the distinction between physical and logical localities and, hence, the so called allocation environment. The latter is a component of a node that acts as a name solver binding logical localities, occurring in the processes hosted in the node, to specific physical localities.

  6. 6.

    Code completion is provided in the X-Klaim Eclipse editor for imports as well as standard “Organize imports” mechanisms.

  7. 7.

    https://www.ros.org/.

  8. 8.

    Jetty 9: https://www.eclipse.org/jetty/.

  9. 9.

    This interaction is denoted in Fig. 5 by a white arrow, to stress its optionality.

  10. 10.

    We ‘consume’ java_rosbridge and X-Klaim runtime libraries as Maven artifacts.

  11. 11.

    Non-blocking versions of in and read are also available: in_nb and read_nb, respectively.

References

  1. Adam, S., Schultz, U.P.: Towards interactive, incremental programming of ROS nodes. In: Workshop on Domain-Specific Languages and Models for Robotic Systems (2014)

    Google Scholar 

  2. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Álvarez, B.: V\(^3\)CMM: a 3-view component meta-model for model-driven robotic software development. J. Softw. Eng. Rob. 1, 3–17 (2010)

    Google Scholar 

  3. Bettini, L., De Nicola, R., Falassi, D., Lacoste, M., Loreti, M.: A flexible and modular framework for implementing infrastructures for global computing. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 181–193. Springer, Heidelberg (2005). https://doi.org/10.1007/11498094_17

    Chapter  Google Scholar 

  4. Bettini, L., De Nicola, R., Pugliese, R.: KLAVA: a Java package for distributed and mobile applications. Softw. Pract. Experience 32(14), 1365–1394 (2002)

    Article  Google Scholar 

  5. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd edn. Packt Publishing, Birmingham (2016)

    Google Scholar 

  6. Bettini, L., De Nicola, R., Pugliese, R., Ferrari, G.L.: Interactive mobile agents in X-Klaim. In: WETICE, pp. 110–117. IEEE Computer Society (1998)

    Google Scholar 

  7. Bettini, L., Loreti, M., Pugliese, R.: An infrastructure language for open nets. In: SAC, pp. 373–377. ACM (2002)

    Google Scholar 

  8. Bettini, L., Merelli, E., Tiezzi, F.: X-Klaim is back. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools for Concurrent and Distributed Programming. LNCS, vol. 11665, pp. 115–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21485-2_8

    Chapter  Google Scholar 

  9. Brugali, D.: Model-driven software engineering in robotics: Models are designed to use the relevant things, thereby reducing the complexity and cost in the field of robotics. IEEE Robot. Autom. Mag. 22(3), 155–166 (2015)

    Article  Google Scholar 

  10. Bruyninckx, H., Klotzbücher, M., Hochgeschwender, N., Kraetzschmar, G.K., Gherardi, L., Brugali, D.: The BRICS component model: a model-based development paradigm for complex robotics software systems. In: SAC, pp. 1758–1764. ACM (2013)

    Google Scholar 

  11. Buravlev, V., De Nicola, R., Mezzina, C.A.: Evaluating the efficiency of Linda implementations. Concurr. Comput. Pract. Exp. 30(8) (2018)

    Google Scholar 

  12. De Nicola, R., Di Stefano, L., Inverso, O.: Toward formal models and languages for verifiable multi-robot systems. Front. Rob. AI 5, 94 (2018)

    Article  Google Scholar 

  13. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: a kernel language for agents interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

    Article  Google Scholar 

  14. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-specific language to design, simulate and deploy robotic applications. In: Noda, I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI), vol. 7628, pp. 149–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34327-8_16

    Chapter  Google Scholar 

  15. Di Ruscio, D., Malavolta, I., Pelliccione, P.: A family of domain-specific languages for specifying civilian missions of multi-robot systems. In: Proceedings of MORSE@STAF. CEUR Workshop Proceedings, vol. 1319, pp. 16–29 (2014)

    Google Scholar 

  16. Djukic, V., Popovic, A., Tolvanen, J.: Domain-specific modeling for robotics: from language construction to ready-made controllers and end-user applications. In: Proceedings of MORSE@RoboCup, pp. 47–54. ACM (2016)

    Google Scholar 

  17. Efftinge, S., et al.: Xbase: implementing domain-specific languages for Java. In: GPCE, pp. 112–121. ACM (2012)

    Google Scholar 

  18. Frigerio, M., Buchli, J., Caldwell, D.G.: A domain specific language for kinematic models and fast implementations of robot dynamics algorithms. In: Proceedings of DSLRob’11. CoRR, vol. abs/1301.7190 (2013)

    Google Scholar 

  19. Gelernter, D.: Generative Communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)

    Article  Google Scholar 

  20. Houliston, T., et al.: NUClear: a loosely coupled software architecture for humanoid robot systems. Front. Rob. and AI 3, 20 (2016)

    Google Scholar 

  21. Meng, W., Park, J., Sokolsky, O., Weirich, S., Lee, I.: Verified ROS-based deployment of platform-independent control systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 248–262. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_18

    Chapter  Google Scholar 

  22. Milner, R.: Communication and Concurrency. PHI Series in Computer Science. Prentice Hall, Upper Saddle River (1989)

    Google Scholar 

  23. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-specific modeling and languages in robotics. J. Softw. Eng. Rob. 7, 75–99 (2016)

    Google Scholar 

  24. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  25. Ramaswamy, A., Monsuez, B., Tapus, A.: SafeRobots: a model-driven approach for designing robotic software architectures. In: Proceedings of CTS, pp. 131–134. IEEE (2014)

    Google Scholar 

  26. Rutle, A., Backer, J., Foldøy, K., Bye, R.T.: CommonLang: a DSL for defining robot tasks. In: Proceedings of MODELS 2018 Workshops. CEUR Workshop Proceedings, vol. 2245, pp. 433–442 (2018)

    Google Scholar 

  27. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics: communication patterns as key for a robotics component model. In: Introduction to Modern Robotics, pp. 119–150. iConcept Press (2011)

    Google Scholar 

  28. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. IEEE Comput. 39(2), 25–31 (2006)

    Article  Google Scholar 

  29. Voelter, M.: Using language workbenches and domain-specific languages for safety-critical software development. In: Proceedings of SE/SWM. LNI, vol. P-292, pp. 143–144. GI (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenzo Bettini , Khalid Bourr , Rosario Pugliese or Francesco Tiezzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bettini, L., Bourr, K., Pugliese, R., Tiezzi, F. (2020). Writing Robotics Applications with X-Klaim. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Engineering Principles. ISoLA 2020. Lecture Notes in Computer Science(), vol 12477. Springer, Cham. https://doi.org/10.1007/978-3-030-61470-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61470-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61469-0

  • Online ISBN: 978-3-030-61470-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics