Skip to main content

Learning Surrogates of a Radiative Transfer Model for the Sentinel 5P Satellite

  • Conference paper
  • First Online:
Discovery Science (DS 2020)

Abstract

Surrogate models approximate the predictions of other models. The motivation for learning surrogate models can come from computational concerns, when the predictions of the original model are computationally expensive to obtain. In contrast, the surrogate models are computationally efficient.

In this paper, we propose a framework for machine learning of surrogate models, which operate on the same input and output spaces as their original models. Instead of learning direct mappings from the input to the output space (and vice versa), we first assess the intrinsic dimensionality of the input and output spaces and reduce it appropriately, by using PCA and autoencoders. Predictive models are learned on the reduced spaces by the use of neural networks and their predictions are mapped to the original spaces.

We apply the framework to learn a surrogate model for a complex radiative transfer model RemoTeC, designed and built at SRON in the Netherlands. The original model predicts shortwave infrared (SWIR) spectra, for a given state vector of atmospheric parameters, representative of any geo-location that the Sentinel 5P satellite may encounter. The results indicate a low dimensionality of both the input and the output space and are accurate in both the forward and reverse direction.

J. Brence and J. Tanevski—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., Aben, I.: TROPOMI aboard Sentinel-5 Precursor: prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote Sens. Environ. 120, 267–276 (2012). https://doi.org/10.1016/j.rse.2011.05.030

    Article  Google Scholar 

  3. Charte, D., Charte, F., García, S., del Jesus, M.J., Herrera, F.: A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fusion 44, 78–96 (2018)

    Article  Google Scholar 

  4. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  6. Hasekamp, O.P., Landgraf, J.: A linearized vector radiative transfer model for atmospheric trace gas retrieval. J. Quant. Spectrosc. Radiat. Transf. 75(2), 221–238 (2002). https://doi.org/10.1016/S0022-4073(01)00247-3

    Article  Google Scholar 

  7. Hu, H., et al.: The operational methane retrieval algorithm for TROPOMI. Atmos. Meas. Tech. 9, 5423–5440 (2016). https://doi.org/10.5194/amt-9-5423-2016. www.atmos-meas-tech.net/9/5423/2016/

  8. Hu, H., et al.: Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT, April 2018. https://doi.org/10.1002/2018GL077259. http://doi.wiley.com/10.1002/2018GL077259

  9. IPCC: Fifth Assessment Report - Impacts, Adaptation and Vulnerability (2014). http://www.ipcc.ch/report/ar5/wg2/

  10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  12. McInnes, L., Healy, J., Melville, J.: UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  13. Pearson, K.: LIII. on lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    Article  Google Scholar 

  14. Tanevski, J., Džeroski, S., Todorovski, T.: Meta-model framework for surrogate-based parameter estimation in dynamical systems. IEEE Access 99 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jure Brence .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brence, J., Tanevski, J., Adams, J., Malina, E., Džeroski, S. (2020). Learning Surrogates of a Radiative Transfer Model for the Sentinel 5P Satellite. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61527-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61526-0

  • Online ISBN: 978-3-030-61527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics