Skip to main content

Mining Constrained Regions of Interest: An Optimization Approach

  • Conference paper
  • First Online:
Discovery Science (DS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12323))

Included in the following conference series:

  • 1317 Accesses

Abstract

The amount and diversity of mobile and IoT location and trajectory data are increasing rapidly. As a consequence, there is an emerging need for flexible and scalable tools for analyzing this data. In this work we focus on an important building block for analyzing location data, that is, the problem of partitioning a space into regions of interest (ROIs) that are densely visited. The extraction of ROIs is of great importance as it constitutes the first step of many types of data analysis on mobility data, such as the extraction of trajectory patterns expressed in terms of sequences of ROIs. However, in this paper we argue that unconstrained ROIs are not meaningful and useful in all applications. To address this weakness, we propose the problem of constraint-based ROI mining, and identify two types of constraints: intra- and inter-ROI constraints. Subsequently, we propose an integer linear programming formulation of the task of discovering a fixed number of constrained ROIs from a binary density matrix. We extend the approach to discover automatically the number of ROIs by relying on the Minimum Description Length Principle. Our experiments on real data show that the approach is both flexible, scalable and able to retrieve constrained ROIs of higher quality than those extracted with existing approaches, even when no constraints are imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Python code of our model is accessible here https://github.com/AlexandreDubray/mining-ROI.

  2. 2.

    The data set can be downloaded at this link https://www.kaggle.com/crailtap/taxi-trajectory/home. We filtered out incomplete trajectories and the few trajectories that went too far away from Porto.

References

  1. Agrawal, R., Srikant, R.: Mining sequential patterns. In: IEEE International Conference on Data Engineering (ICDE), vol. 95, pp. 3–14 (1995)

    Google Scholar 

  2. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman, A.: A model for enriching trajectories with semantic geographical information. In: GIS (2007)

    Google Scholar 

  3. Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: ordering points to identify the clustering structure. ACM SIGMOD Rec. 28(2), 49–60 (1999)

    Article  Google Scholar 

  4. Aoga, J.O.R., Guns, T., Schaus, P.: An efficient algorithm for mining frequent sequence with constraint programming. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9852, pp. 315–330. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46227-1_20

    Chapter  Google Scholar 

  5. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: G-ROI: automatic region-of-interest detection driven by geotagged social media data. TKDD 12(3), 1–22 (2018)

    Article  Google Scholar 

  6. Cai, G., Hio, C., Bermingham, L., Lee, K., Lee, I.: Sequential pattern mining of geo-tagged photos with an arbitrary regions-of-interest detection method. Expert Syst. Appl. 41(7), 3514–3526 (2014)

    Article  Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  8. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: SIGKDD (2007)

    Google Scholar 

  9. Gorawski, M., Jureczek, P.: Regions of interest in trajectory data warehouse. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS (LNAI), vol. 5990, pp. 74–81. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12145-6_8

    Chapter  Google Scholar 

  10. Kalra, T., Mathew, R., Pal, S.P., Pandey, V.: Maximum weighted independent sets with a budget. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS, vol. 10156, pp. 254–266. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_23

    Chapter  Google Scholar 

  11. Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W., Ma, W.Y.: Mining user similarity based on location history. In: SIGSPATIAL. ACM (2008)

    Google Scholar 

  12. Monreale, A., Pinelli, F., Trasarti, R., Giannotti, F.: Wherenext: a location predictor on trajectory pattern mining. In: SIGKDD. ACM (2009)

    Google Scholar 

  13. Palma, A.T., Bogorny, V., Kuijpers, B., Alvares, L.O.: A clustering-based approach for discovering interesting places in trajectories. In: SAC (2008)

    Google Scholar 

  14. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471 (1978)

    Article  Google Scholar 

  15. Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for location prediction. In: SIGSPATIAL. ACM (2011)

    Google Scholar 

  16. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical world. In: SIGKDD. ACM (2011)

    Google Scholar 

  17. Yuan, J., et al.: T-drive: driving directions based on taxi trajectories. In: SIGSPATIAL. ACM (2010)

    Google Scholar 

  18. Yuan, N.J., Zheng, Y., Zhang, L., Xie, X.: T-finder: a recommender system for finding passengers and vacant taxis. IEEE TKDE 25(10), 2390–2403 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Dubray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubray, A., Derval, G., Nijssen, S., Schaus, P. (2020). Mining Constrained Regions of Interest: An Optimization Approach. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds) Discovery Science. DS 2020. Lecture Notes in Computer Science(), vol 12323. Springer, Cham. https://doi.org/10.1007/978-3-030-61527-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61527-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61526-0

  • Online ISBN: 978-3-030-61527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics