Skip to main content

AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12450))

Abstract

The ability to generate multiple contrasts for the same patient is unique about MRI and of very high clinical value. In this work, we take up the problem of modality synthesis in multimodal MRI and propose an efficient, multiresolution encoder-decoder network trained like an autoencoder that can predict missed inputs at the output. This can help in avoiding the acquisition of redundant information, thereby saving time. We formulate and demonstrate our proposed AutoSyncoder network in a GAN and cyclic GAN setting, and evaluate on the BRATS-15 multimodal glioma dataset. A PSNR ranging between 29 to 30.5 dB, and SSIM over 0.88 is achieved for all the modalities, with simplistic training, thereby establishing the potential of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chartsias, A., Joyce, T., Giuffrida, M.V., Tsaftaris, S.A.: Multimodal MR synthesis via modality-invariant latent representation. IEEE Trans. Med. Imaging 37(3), 803–814 (2018)

    Article  Google Scholar 

  2. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation, pp. 8789–8797 (2018)

    Google Scholar 

  3. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: Random forest regression for magnetic resonance image synthesis. Med. Image Anal. 35, 475–488 (2017)

    Article  Google Scholar 

  4. Kim, S., Jang, H., Jang, J., Lee, Y.H., Hwang, D.: Deep-learned short tau inversion recovery imaging using multi-contrast MR images. Magn. Reson. Med. 84, 2994–3008 (2020)

    Article  Google Scholar 

  5. Lee, D., Moon, W.J., Ye, J.C.: Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nature Mach. Intell. 2(1), 34–42 (2020)

    Article  Google Scholar 

  6. Li, H., et al.: DiamondGAN: unified multi-modal generative adversarial networks for MRI sequences synthesis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 795–803. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_87

    Chapter  Google Scholar 

  7. Liu, X., Wang, M., Zha, Z.J., Hong, R.: Cross-modality feature learning via convolutional autoencoder. ACM Trans. Multimedia Comput. Commun. Appl. 15(1s), 7:1–7:20 (2019)

    Google Scholar 

  8. Mason, A., et al.: Comparison of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of MR images. IEEE Trans. Med. Imaging 39(4), 1064–1072 (2020)

    Article  Google Scholar 

  9. Menze, B., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2014)

    Article  Google Scholar 

  10. Sharma, A., Hamarneh, G.: Missing MRI pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans. Med. Imaging 39(4), 1170–1183 (2020)

    Article  Google Scholar 

  11. Van Nguyen, H., Zhou, K., Vemulapalli, R.: Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 677–684. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_83

    Chapter  Google Scholar 

  12. Yang, Q., Li, N., Zhao, Z., Fan, X., Chang, E.I.C., Xu, Y.: MRI cross-modality image-to-image translation. Sci. Rep. 10(1), 3753 (2020)

    Article  Google Scholar 

  13. Ye, D.H., Zikic, D., Glocker, B., Criminisi, A., Konukoglu, E.: Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 606–613. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_76

    Chapter  Google Scholar 

  14. Yurt, M., Dar, S.U.H., Erdem, A., Erdem, E., Cukur, T.: mustGAN: multi-stream generative adversarial networks for MR image synthesis. arXiv:1909.11504 [cs, eess], September 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JayaChandra Raju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raju, J., Murugesan, B., Ram, K., Sivaprakasam, M. (2020). AutoSyncoder: An Adversarial AutoEncoder Framework for Multimodal MRI Synthesis. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61598-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61597-0

  • Online ISBN: 978-3-030-61598-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics