Skip to main content

Cellular/Vascular Reconstruction Using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation

  • Conference paper
  • First Online:
Machine Learning for Medical Image Reconstruction (MLMIR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12450))

  • 1571 Accesses

Abstract

Maps of brain microarchitecture are important for understanding neurological function, behavior, and changes due to chronic conditions, such as neurodegenerative diseases. New high-throughput microscopy techniques produce whole organ data sets imaged at sub-cellular resolution. The resulting volumetric data is composed of densely packed cells and interconnected microvascular networks. The data size and complexity makes manual annotation impractical and automatic segmentation challenging. In this paper, we propose a processing pipeline to segment, reconstruct, and analyze cellular and vascular microstructures in large rodent brain volumes. We first introduce a fully-convolutional, deep, and densely-connected encoder-decoder for pixel-wise semantic segmentation as a pre-processing step in our pipeline. Excessive memory complexity is mitigated by compressing the features passed through skip connections, resulting in fewer parameters and enabling a significant performance increase over prior architectures. We then quantify the pipeline’s scalability, accuracy, and reliability for extracting explicit cellular and vascular images, including vessel connectivity. Finally, we demonstrate the viability of this processing pipeline on a large (1 \(\mathrm {mm}^{3}\)) region of the mouse somatosensory cortex as a proof of efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th \(\{USENIX\}\) Symposium on Operating Systems Design and Implementation (\(\{OSDI\}\) 2016), pp. 265–283 (2016)

    Google Scholar 

  2. Akil, H., Martone, M.E., Van Essen, D.C.: Challenges and opportunities in mining neuroscience data. Science 331(6018), 708–712 (2011)

    Article  Google Scholar 

  3. Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)

    Article  Google Scholar 

  4. Andreone, B.J., Lacoste, B., Gu, C.: Neuronal and vascular interactions. Ann. Rev. Neurosci. 38, 25–46 (2015)

    Article  Google Scholar 

  5. Blinder, P., Tsai, P.S., Kaufhold, J.P., Knutsen, P.M., Suhl, H., Kleinfeld, D.: The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16(7), 889 (2013)

    Article  Google Scholar 

  6. Erö, C., Gewaltig, M.O., Keller, D., Markram, H.: A cell atlas for the mouse brain. Front. Neuroinform. 12, 84 (2018). https://doi.org/10.3389/fninf.2018.00084

    Article  Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  8. Govyadinov, P.A., Womack, T., Chen, G., Mayerich, D., Eriksen, J.: Robust tracing and visualization of heterogeneous microvascular networks. IEEE Trans. Vis. Comput. Graph. 1, 1–1 (2018)

    Google Scholar 

  9. Haft-Javaherian, M., Fang, L., Muse, V., Schaffer, C.B., Nishimura, N., Sabuncu, M.R.: Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models. PloS One 14(3), e0213539 (2019)

    Article  Google Scholar 

  10. Heinzer, S., et al.: Hierarchical microimaging for multiscale analysis of large vascular networks. Neuroimage 32(2), 626–636 (2006)

    Article  Google Scholar 

  11. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  12. Iadecola, C.: Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat. Rev. Neurosci. 5(5), 347 (2004)

    Article  Google Scholar 

  13. Irintchev, A., Rollenhagen, A., Troncoso, E., Kiss, J.Z., Schachner, M.: Structural and functional aberrations in the cerebral cortex of tenascin-C deficient mice. Cereb. Cortex 15(7), 950–962 (2004). https://doi.org/10.1093/cercor/bhh195

    Article  Google Scholar 

  14. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–1183. IEEE (2017)

    Google Scholar 

  15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2014)

    Google Scholar 

  16. Kleinfeld, D., et al.: A guide to delineate the logic of neurovascular signaling in the brain. Front. Neuroenergetics 3, 1 (2011)

    Article  Google Scholar 

  17. Kong, H., Akakin, H.C., Sarma, S.E.: A generalized Laplacian of Gaussian filter for blob detection and its applications. IEEE Trans. Cybern. 43(6), 1719–1733 (2013)

    Article  Google Scholar 

  18. Lauwers, F., Cassot, F., Lauwers-Cances, V., Puwanarajah, P., Duvernoy, H.: Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. Neuroimage 39(3), 936–948 (2008)

    Article  Google Scholar 

  19. Li, A., et al.: Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330(6009), 1404–1408 (2010)

    Article  Google Scholar 

  20. Mayerich, D., Abbott, L., McCormick, B.: Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. J. Microsc. 231(1), 134–143 (2008)

    Article  MathSciNet  Google Scholar 

  21. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  22. Mobiny, A., Singh, A., Van Nguyen, H.: Risk-aware machine learning classifier for skin lesion diagnosis. J. Clin. Med. 8(8), 1241 (2019)

    Article  Google Scholar 

  23. Murakami, T.C., et al.: A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21(4), 625 (2018)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Saadatifard, L., Mayerich, D.: Three dimensional parallel automated segmentation of neural soma in large KESM images of brain tissue. Microsc. Microanal. 22(S3), 788–789 (2016)

    Article  Google Scholar 

  26. Saadatifard, L., Abbott, L.C., Montier, L., Ziburkus, J., Mayerich, D.: Robustcell detection for large-scale 3D microscopy using GPU-accelerated iterative voting. Front. Neuroanat. 12, 28 (2018)

    Article  Google Scholar 

  27. Tsai, P.S., et al.: Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29(46), 14553–14570 (2009)

    Article  Google Scholar 

  28. Wu, J., et al.: 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. Neuroimage 87, 199–208 (2014)

    Article  Google Scholar 

  29. Xiong, B., et al.: Precise cerebral vascular atlas in stereotaxic coordinates of whole mouse brain. Front. Neuroanat. 11, 128 (2017)

    Article  Google Scholar 

  30. Zhang, M., Zhang, L., Cheng, H.D.: A neutrosophic approach to image segmentation based on watershed method. Sign. Process. 90(5), 1510–1517 (2010)

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded in part by the National Institutes of Health/National Library of Medicine #4 R00 LM011390-02 and the Cancer Prevention and Research Institute of Texas (CPRIT) #RR140013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Saadatifard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadatifard, L., Mobiny, A., Govyadinov, P., Van Nguyen, H., Mayerich, D. (2020). Cellular/Vascular Reconstruction Using a Deep CNN for Semantic Image Preprocessing and Explicit Segmentation. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2020. Lecture Notes in Computer Science(), vol 12450. Springer, Cham. https://doi.org/10.1007/978-3-030-61598-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61598-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61597-0

  • Online ISBN: 978-3-030-61598-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics