Skip to main content

DeepED: A Deep Learning Framework for Estimating Evolutionary Distances

  • Conference paper
  • First Online:
  • 3064 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Abstract

Evolutionary distances refer to the number of substitutions per site in two aligned nucleotide or amino acid sequences, which reflect divergence time and are much significant for phylogenetic inferences. In the past several decades, lots of molecular evolution models have been proposed for evolutionary distance estimation. Most of these models are designed under more or less assumptions and some assumptions are in good agreement with some real-world data but not all. To relax these assumptions and improve accuracies in evolutionary distance estimation, this paper proposes a framework containing Deep Neural Networks (DNNs), called DeepED (Deep learning method to estimate Evolutionary Distances), to estimate evolutionary distances for aligned DNA sequence pairs. The purposely designed structure in this framework enables it to handle long and variable length sequences as well as to find important segments in a sequence. The models of the network are trained with reliable data from real world which includes highly credible phylogenetic inferences. Experimental results demonstrate that DeepED models achieve a accuracy up to 0.98 (R-Squared), which outperforms traditional methods.

This work is partially supported by National Science Foundation of China (U1833114, 61872201, 61702521) and Science and Technology Development Plan of Tianjin (18ZXZNGX00140, 18ZXZNGX00200).

Z. Liu and M. Ren—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jukes, T.H., Cantor, C.R., et al.: Evolution of protein molecules. Mamm. Protein Metab. 3(21), 132 (1969)

    Google Scholar 

  2. Posada, D., Crandall, K.A.: Selecting the best-fit model of nucleotide substitution. Syst. Biol. 50(4), 580–601 (2001)

    Article  Google Scholar 

  3. Cunningham, C.W., Zhu, H., Hillis, D.M.: Best-fit maximum-likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52(4), 978–987 (1998)

    Article  Google Scholar 

  4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  5. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  6. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  7. Tajima, F., Nei, M.: Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1(3), 269–285 (1984)

    Google Scholar 

  8. Kimura, M.: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16(2), 111–120 (1980)

    Article  Google Scholar 

  9. Tamura, K.: Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+ C-content biases. Mol. Biol. Evol. 9(4), 678–687 (1992)

    Google Scholar 

  10. Waddell, P.J., Steel, M.A.: General time reversible distances with unequal rates across sites (1996)

    Google Scholar 

  11. Zhang, J., Xun, G.: Correlation between the substitution rate and rate variation among sites in protein evolution. Genetics 149(3), 1615–1625 (1998)

    Google Scholar 

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  15. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  16. Hornik, K., Stinchcombe, M., White, H., et al.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  17. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  18. Zhang, H., et al.: A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming. Front. Genet. 10, 467 (2019)

    Article  Google Scholar 

  19. Wang, R., et al.: Deepdna: a hybrid convolutional and recurrent neural network for compressing human mitochondrial genomes. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 270–274. IEEE (2018)

    Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  21. Huber, P.J.: Robust estimation of a location parameter. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 492–518. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-4380-9_35

    Chapter  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  24. Perelman, P., et al.: A molecular phylogeny of living primates. PLoS Genet. 7(3), e1001342 (2011)

    Article  Google Scholar 

  25. Katoh, K., Standley, D.M.: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013)

    Article  Google Scholar 

  26. Bouckaert, R., et al.: Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014)

    Article  Google Scholar 

  27. Hughes, L.C., et al.: Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl. Acad. Sci. 115(24), 6249–6254 (2018)

    Article  Google Scholar 

  28. Mirarab, S., Warnow, T.: ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31(12), i44–i52 (2015)

    Article  Google Scholar 

  29. Kumar, S., Stecher, G., Tamura, K.: Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016)

    Article  Google Scholar 

  30. Song, N., Liang, A.-P., Bu, C.-P.: A molecular phylogeny of hemiptera inferred from mitochondrial genome sequences. PLoS ONE 7(11), e48778 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Science Foundation of China (61872201, 61702521, U1833114) and Science and Technology Development Plan of Tianjin (18ZXZNGX00140, 18ZXZNGX00200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Xiaoguang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Ren, M., Niu, Z., Wang, G., Liu, X. (2020). DeepED: A Deep Learning Framework for Estimating Evolutionary Distances. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics