Skip to main content

Interpretable Machine Learning Structure for an Early Prediction of Lane Changes

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Abstract

This paper proposes an interpretable machine learning structure for the task of lane change intention prediction, based on multivariate time series data. A Mixture-of-Experts architecture is adapted to simultaneously predict lane change directions and the time-to-lane-change. To facilitate reproducibility, the approach is demonstrated on a publicly available dataset of German highway scenarios. Recurrent networks for time series classification using Gated Recurrent Units and Long-Short-Term Memory cells, as well as convolution neural networks serve as comparison references. The interpretability of the results is shown by extracting the rule sets of the underlying classification and regression trees, which are grown using data-adaptive interpretable features. The proposed method outperforms the reference methods in false alarm behavior while displaying a state-of-the-art early detection performance.

Funded by Audi AG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7) (2015). https://doi.org/10.1371/journal.pone.0130140

  2. Baldacchino, T., Cross, E.J., Worden, K., Rowson, J.: Variational Bayesian mixture of experts models and sensitivity analysis for nonlinear dynamical systems. Mech. Syst. Signal Process. 66-67, 178–200 (2016). https://doi.org/10.1016/j.ymssp.2015.05.009. http://www.sciencedirect.com/science/article/pii/S0888327015002307

  3. Tang, B., Heywood, M.I., Shepherd, M.: Input partitioning to mixture of experts. In: Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN 2002 (Cat. No. 02CH37290), vol. 1, pp. 227–232 (2002). https://doi.org/10.1109/IJCNN.2002.1005474

  4. Breiman, L.: Classification and regression trees. The Wadsworth statistics/probability series, Wadsworth International Group and Wadsworth & Brooks/Cole and Wadsworth & Brooks/Cole Advanced Books & Software, Belmont, Calif. and Pacific Grove, Calif. and Pacific Grove, Calif. and Monterey, Calif. (1984)

    Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Stroudsburg (2014). https://doi.org/10.3115/v1/D14-1179

  6. Dang, H.Q., Furnkranz, J., Biedermann, A., Hoepfl, M.: Time-to-lane-change prediction with deep learning. In: IEEE ITSC 2017, pp. 1–7. IEEE, Piscataway (2017). https://doi.org/10.1109/ITSC.2017.8317674

  7. Ebrahimpour, R., Kabir, E., Esteky, H., Yousefi, M.R.: A mixture of multilayer perceptron experts network for modeling face/nonface recognition in cortical face processing regions. Intell. Autom. Soft Comput. 14(2), 151–162 (2008). https://doi.org/10.1080/10798587.2008.10642988

    Article  Google Scholar 

  8. Gallitz, O., de Candido, O., Botsch, M., Utschick, W.: Interpretable feature generation using deep neural networks and its application to lane change detection. In: The 2019 IEEE Intelligent Transportation Systems Conference - ITSC, pp. 3405–3411. IEEE, Piscataway (2019). https://doi.org/10.1109/ITSC.2019.8917524

  9. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2019). https://doi.org/10.1145/3236009

    Article  Google Scholar 

  10. Gunning, D.: Explainable artificial intelligence (XAI). Defense Advanced Research Projects Agency (DARPA), nd Web (2017)

    Google Scholar 

  11. He, G., Duan, Y., Peng, R., Jing, X., Qian, T., Wang, L.: Early classification multivariate time series. Neurocomputing 149, 777–787 (2015). https://doi.org/10.1016/j.neucom.2014.07.056. http://www.sciencedirect.com/science/article/pii/S092523121401008X

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  13. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991). https://doi.org/10.1162/neco.1991.3.1.79

    Article  Google Scholar 

  14. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highd dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: 2018 IEEE Intelligent Transportation Systems Conference, pp. 2118–2125. IEEE, Piscataway (2018). https://doi.org/10.1109/ITSC.2018.8569552

  15. Lin, Y.-F., Chen, H.-H., Tseng, V.S., Pei, J.: Reliable early classification on multivariate time series with numerical and categorical attributes. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9077, pp. 199–211. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18038-0_16

    Chapter  Google Scholar 

  16. Ghalwash, M.F., Obradovic, Z.: Early classification of multivariate temporal observations by extraction of interpretable shapelets. BMC Bioinform. 13(1), 1–12 (2012). https://doi.org/10.1186/1471-2105-13-195

  17. Sadouk, L.: CNN approaches for time series classification. In: Ngan, C.K. (ed.) Time Series Analysis - Data, Methods, and Applications. IntechOpen (2019). https://doi.org/10.5772/intechopen.81170

  18. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models (2017). http://arxiv.org/pdf/1708.08296v1

  19. Schlechtriemen, J., Wirthmueller, F., Wedel, A., Breuel, G., Kuhnert, K.D.: When will it change the lane? A probabilistic regression approach for rarely occurring events. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 1373–1379 (2015)

    Google Scholar 

  20. van Lent, F.: An explainable artificial intelligence system for small-unit tactical behavior. In: Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence, pp. 900–907 (2004)

    Google Scholar 

  21. Wissing, C., Nattermann, T., Glander, K.H., Hass, C., Bertram, T.: Lane change prediction by combining movement and situation based probabilities. IFAC-PapersOnLine 50(1), 3554–3559 (2017). https://doi.org/10.1016/j.ifacol.2017.08.960

    Article  Google Scholar 

  22. Xing, Z., Pei, J., Yu, P.S., Wang, K.: Extracting interpretable features for early classification on time series. In: Liu, B., Liu, H., Clifton, C.W., Washio, T., Kamath, C. (eds.) Proceedings of the 2011 SIAM International Conference on Data Mining, pp. 247–258. Society for Industrial and Applied Mathematics, Philadelphia (2011). https://doi.org/10.1137/1.9781611972818.22

  23. Yan, Z., Yang, K., Wang, Z., Yang, B., Kaizuka, T., Nakano, K.: Time to lane change and completion prediction based on gated recurrent unit network. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 102–107. IEEE, Piscataway (2019). https://doi.org/10.1109/IVS.2019.8813838

  24. Ye, L., Keogh, E.: Time series shapelets. In: Elder, J., Fogelman, F.S., Flach, P., Zaki, M. (eds.) KDD 2009, p. 947. ACM, New York (2009). https://doi.org/10.1145/1557019.1557122

  25. Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L.: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification. Front. Comput. Sci. 10(1), 96–112 (2016). https://doi.org/10.1007/s11704-015-4478-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Gallitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallitz, O., De Candido, O., Botsch, M., Melz, R., Utschick, W. (2020). Interpretable Machine Learning Structure for an Early Prediction of Lane Changes. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics