Skip to main content

EdgeAugment: Data Augmentation by Fusing and Filling Edge Maps

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

  • 3096 Accesses

Abstract

Data augmentation is an effective technique for improving the accuracy of network. However, current data augmentation can not generate more diverse training data. In this article, we overcome this problem by proposing a novel form of data augmentation to fuse and fill different edge maps. The edge fusion augmentation pipeline consists of four parts. We first use the Sobel operator to extract the edge maps from the training images. Then a simple integrated strategy is used to integrate the edge maps extracted from different images. After that we use an edge fuse GAN (Generative Adversarial Network) to fuse the integrated edge maps to synthesize new edge maps. Finally, an edge filling GAN is used to fill the edge maps to generate new training images. This augmentation pipeline can augment data effectively by making full use of the features from training set. We verified our edge fusion augmentation pipeline on different datasets combining with different edge integrated strategies. Experimental results illustrate a superior performance of our pipeline comparing to the existing work. Moreover, as far as we know, we are the first using GAN to augment data by fusing and filling feature from multiple edge maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  2. Bailo, O., Ham, D., Min Shin, Y.: Red blood cell image generation for data augmentation using conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0 (2019)

    Google Scholar 

  3. Bowles, C., et al.: GAN augmentation: Augmenting training data using generative adversarial networks. CoRR abs/1810.10863 (2018). http://arxiv.org/abs/1810.10863

  4. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

    Google Scholar 

  5. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)

    Article  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5767–5777. Curran Associates, Inc. (2017). http://papers.nips.cc/paper/7159-improved-training-of-wasserstein-gans.pdf

  8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Jian, S.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  11. Jackson, P.T., Atapour-Abarghouei, A., Bonner, S., Breckon, T., Obara, B.: Style augmentation: data augmentation via style randomization. arXiv preprint arXiv:1809.05375, pp. 1–13 (2018)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105. Curran Associates, Inc. (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  15. Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)

  16. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014). http://arxiv.org/abs/1411.1784

  17. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. CoRR abs/1802.05957 (2018). http://arxiv.org/abs/1802.05957

  18. Miyato, T., Koyama, M.: CGANs with projection discriminator. CoRR abs/1802.05637 (2018). http://arxiv.org/abs/1802.05637

  19. Nazeri, K., Ng, E., Joseph, T., Qureshi, F.Z., Ebrahimi, M.: EdgeConnect: generative image inpainting with adversarial edge learning. arXiv Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  20. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  21. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  23. Ren, R., Hung, T., Tan, K.C.: A generic deep-learning-based approach for automated surface inspection. IEEE Trans. Cybern. 48(3), 929–940 (2018)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Wang, X., You, M., Shen, C.: Adversarial generation of training examples for vehicle license plate recognition. CoRR abs/1707.03124 (2017). http://arxiv.org/abs/1707.03124

  26. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.org/abs/1708.07747

Download references

Acknowledgement

This work was supported by National Key Research and Development Program of China (No. 2018YFB2101300), Shanghai Natural Science Foundation (Grant No. 18ZR1411400) and the National Trusted Embedded Software Engineering Technology Research Center (East China Normal University). We benefit a lot from the Research on algorithms for large-scale structural Optimization problems driven by Machine Learning [2019–2022, 19ZR141420].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueling Zhang or Jiangtao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, B., Zhang, Y., Chen, W., Wang, X., Wang, J. (2020). EdgeAugment: Data Augmentation by Fusing and Filling Edge Maps. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics