Skip to main content

PART-GAN: Privacy-Preserving Time-Series Sharing

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

Abstract

In this paper, we provide a practical privacy-preserving generative model for time series data augmentation and sharing, called PART-GAN. Our model enables the local data curator to provide a freely accessible public generative model derived from original data for cloud storage. Compared with existing approaches, PART-GAN has three key advantages: It enables the generation of an unlimited amount of synthetic time series data under the guidance of a given classification label and addresses the incomplete and temporal irregularity issues. It provides a robust privacy guarantee that satisfies differential privacy to time series data augmentation and sharing. It addresses the trade-offs between utility and privacy by applying optimization strategies. We evaluate and report the utility and efficacy of PART-GAN through extensive empirical evaluations of real-world health/medical datasets. Even at a higher level of privacy protection, our method outperforms GAN with ordinary perturbation. It achieves similar performance with GAN without perturbation in terms of inception score, machine learning score similarity, and distance-based evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.bbci.de/competition/iv/#datasets.

  2. 2.

    https://eicu-crd.mit.edu/.

References

  1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318. ACM (2016)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  3. Arora, S., Ge, R., Neyshabur, B., Zhang, Y.: Stronger generalization bounds for deep nets via a compression approach. arXiv preprint arXiv:1802.05296 (2018)

  4. Cynthia, D.: Differential privacy. In: Automata, Languages and Programming, pp. 1–12 (2006)

    Google Scholar 

  5. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29

    Chapter  Google Scholar 

  6. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends® Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Esteban, C., Hyland, S.L., Rätsch, G.: Real-valued (medical) time series generation with recurrent conditional GANs. arXiv preprint arXiv:1706.02633 (2017)

  8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  9. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  10. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1885–1894. JMLR. org (2017)

    Google Scholar 

  11. Lee, N., Ajanthan, T., Torr, P.H.: SNIP: single-shot network pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340 (2018)

  12. Li, Y., Swersky, K., Zemel, R.: Generative moment matching networks. In: International Conference on Machine Learning, pp. 1718–1727 (2015)

    Google Scholar 

  13. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015)

  14. Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational bayes: unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:1701.04722 (2017)

  15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  16. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2642–2651. JMLR. org (2017)

    Google Scholar 

  17. Park, N., Mohammadi, M., Gorde, K., Jajodia, S., Park, H., Kim, Y.: Data synthesis based on generative adversarial networks. Proc. VLDB Endow. 11(10), 1071–1083 (2018)

    Article  Google Scholar 

  18. Ramponi, G., Protopapas, P., Brambilla, M., Janssen, R.: T-CGAN: conditional generative adversarial network for data augmentation in noisy time series with irregular sampling. arXiv preprint arXiv:1811.08295 (2018)

  19. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  20. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for eeg decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  21. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private updates. In: 2013 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 245–248. IEEE (2013)

    Google Scholar 

  22. Wang, Q., Zhang, Y., Lu, X., Wang, Z., Qin, Z., Ren, K.: Real-time and spatio-temporal crowd-sourced social network data publishing with differential privacy. IEEE Trans. Dependable Secure Comput. 15, 591–606 (2016)

    Google Scholar 

  23. Xie, L., Lin, K., Wang, S., Wang, F., Zhou, J.: Differentially private generative adversarial network. arXiv preprint arXiv:1802.06739 (2018)

  24. Zhang, X., Ji, S., Wang, T.: Differentially private releasing via deep generative model. arXiv preprint arXiv:1801.01594 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Rudolph, C., Nepal, S., Grobler, M., Chen, S. (2020). PART-GAN: Privacy-Preserving Time-Series Sharing. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics