Skip to main content

A New Efficient Finger-Vein Verification Based on Lightweight Neural Network Using Multiple Schemes

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

Abstract

Existing deep learning-based finger-vein algorithms tend to use large-scale neural networks. From the perspective of computational complexity, this is not conducive to practical applications. Besides, in our opinion, finger-vein images often have relatively simple textures and are small in image size, it is not economical to use large-scale neural networks. Inspired by the increasing accuracy of lightweight neural networks on ImageNet, we introduce the lightweight neural network ShuffleNet V2 as a backbone to construct a basic pipeline for finger-vein verification. To customize the network for this application, we propose schemes to improve it from the aspects including data input, network structure, and loss function design. Experimental results on three public databases have exhibited the excellence of the proposed model.

Supported in part by Sino-Singapore International Joint Research Institute (No. 206-A017023, No. 206-A018001), Science and Technology Foundation of Guangzhou Huangpu Development District under Grant 201902010028, and NTU-PKU JRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiu, S., Liu, Y., Zhou, Y., Huang, J., Nie, Y.: Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical transformer. Expert Syst. Appl. 64, 618–632 (2016)

    Article  Google Scholar 

  2. Qin, H., El-Yacoubi, M.A.: Deep representation-based feature extraction and recovering for finger-vein verification. IEEE Trans. Inf. Forensics Secur. 12(8), 1816–1829 (2017)

    Article  Google Scholar 

  3. Fang, Y., Wu, Q., Kang, W.: A novel finger-vein verification system based on two-stream convolutional network learning. Neurocomputing 290, 100–107 (2018)

    Article  Google Scholar 

  4. Hu, H., Kang, W., Lu, Y., Fang, Y., Liu, H., Zhao, J., Deng, F.: FV-Net: learning a finger-vein feature representation based on a CNN. In: 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, pp. 3489–3494. IEEE (2018)

    Google Scholar 

  5. Zeng, J., et al.: Finger vein verification algorithm based on fully convolutional neural network and conditional random field. IEEE Access 8, 65402–65419 (2020)

    Article  Google Scholar 

  6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  7. Hao, Z., Fang, P., Yang, H.: Finger vein recognition based on multi-task learning. In: Proceedings of the 2020 5th International Conference on Mathematics and Artificial Intelligence, Chengdu, China, pp. 133–140, ACM Digital (2020)

    Google Scholar 

  8. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  9. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, pp. 2818–2826, IEEE (2020)

    Google Scholar 

  10. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Long Beach, CA, USA. IEEE (2019)

    Google Scholar 

  11. Yin, Y., Liu, L., Sun, X.: SDUMLA-HMT: a multimodal biometric database. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds.) CCBR 2011. LNCS, vol. 7098, pp. 260–268. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25449-9_33

    Chapter  Google Scholar 

  12. Asaari, M.S.M., Suandi, S.A., Rosdi, B.A.: Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics. Expert Syst. Appl. 41(7), 3367–3382 (2014)

    Article  Google Scholar 

  13. Lu, Y., Xie, S. J., Yoon, S., Wang, Z., Park, D. S.: An available database for the re-search of finger vein recognition. In: 2013 6th International Congress on Image and Signal Processing (CISP), Hangzhou, China, vol. 1, pp. 410–415, IEEE (2013)

    Google Scholar 

  14. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)

  15. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. arXiv preprint arXiv:1708.04896 (2017)

  16. Wang, M., Tang, D.: Region of interest extraction for finger vein images with less information losses. Multimed. Tools Appl. 1–13 (2016). https://doi.org/10.1007/s11042-016-4285-2

  17. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 4510–4520, IEEE (2018)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA. pp. 770–778, IEEE (2016)

    Google Scholar 

  19. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K. Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, pp. 4700–4708, IEEE(2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, H., Hu, Y., Liu, B., Chen, G., Kot, A.C. (2020). A New Efficient Finger-Vein Verification Based on Lightweight Neural Network Using Multiple Schemes. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics