Abstract
Using deep learning for semantic segmentation of medical images is a popular topic of wise medical. The premise of training an efficient deep learning model is to have a large number of medical images with annotations. Most medical images are scattered in hospitals or research institutions, and professionals such as doctors always don’t have enough time to label the images. Besides, due to the constraints of privacy protection regulations like GDPR, sharing data directly between multiple institutions is prohibited. To solve the obstacles above, we propose an efficient federated learning model SU-Net for brain tumor segmentation. We introduce inception module and dense block into standard U-Net to comprise our SU-Net with multi-scale receptive fields and information reusing. We conduct experiments on the LGG (Low-Grade Glioma) Segmentation dataset “Brain MRI Segmentation” in Kaggle. The results show that, in non-federated scenario, SU-Net achieves a AUC (Area Under Curve which measures classification accuracy) of \(99.7\%\) and a DSC (Dice Similarity Coefficient which measures segmentation accuracy) of \(78.5\%\), which are remarkably higher than the state-of-the-art semantic segmentation model DeepLabv3+ and the classical model U-Net dedicated to semantic segmentation of medical images. In federated scenario, SU-Net still outperforms the baselines.
This work is partially supported by National Science Foundation of China (U1833114, 61872201, 61702521) and Science and Technology Development Plan of Tianjin (18ZXZNGX00140, 18ZXZNGX00200).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonawitz, K., et al.: Towards federated learning at scale: system design. In: Proceedings of SysML (2019)
Buda, M.: Brain MRI segmentation: Brain MRI images together with manual FLAIR abnormality segmentation masks (2019). https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation
Buda, M., Saha, A., Mazurowski, M.A.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Trans. Comput. Biol. Med. 109, 218–225 (2019)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Proceedings of ICLR (2014)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. Trans. TPAMI 40(4), 834–848 (2017)
Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: Proceedings of ECCV (2017)
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of ECCV, pp. 801–818 (2018)
Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Proceedings of NIPS, pp. 2843–2851 (2012)
Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44
Google: Tensorflow federated (2016). https://www.tensorflow.org/federated
Hard, A., et al.: Towards federated learning at scale: system design. arXiv preprint arXiv:1811.03604 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 4700–4708 (2017)
Justin Kirby, C.K.: Tcga-lgg (2019). https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)
Mazurowski, M.A., et al.: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J. Neurooncol. 133(1), 27–35 (2017). https://doi.org/10.1007/s11060-017-2420-1
McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of AIStats (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR (2013)
Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of CVPR, pp. 1–9 (2015)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR, pp. 2818–2826 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yi, L., Zhang, J., Zhang, R., Shi, J., Wang, G., Liu, X. (2020). SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_60
Download citation
DOI: https://doi.org/10.1007/978-3-030-61609-0_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61608-3
Online ISBN: 978-3-030-61609-0
eBook Packages: Computer ScienceComputer Science (R0)