Skip to main content

SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2020 (ICANN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12396))

Included in the following conference series:

  • 4527 Accesses

Abstract

Using deep learning for semantic segmentation of medical images is a popular topic of wise medical. The premise of training an efficient deep learning model is to have a large number of medical images with annotations. Most medical images are scattered in hospitals or research institutions, and professionals such as doctors always don’t have enough time to label the images. Besides, due to the constraints of privacy protection regulations like GDPR, sharing data directly between multiple institutions is prohibited. To solve the obstacles above, we propose an efficient federated learning model SU-Net for brain tumor segmentation. We introduce inception module and dense block into standard U-Net to comprise our SU-Net with multi-scale receptive fields and information reusing. We conduct experiments on the LGG (Low-Grade Glioma) Segmentation dataset “Brain MRI Segmentation” in Kaggle. The results show that, in non-federated scenario, SU-Net achieves a AUC (Area Under Curve which measures classification accuracy) of \(99.7\%\) and a DSC (Dice Similarity Coefficient which measures segmentation accuracy) of \(78.5\%\), which are remarkably higher than the state-of-the-art semantic segmentation model DeepLabv3+ and the classical model U-Net dedicated to semantic segmentation of medical images. In federated scenario, SU-Net still outperforms the baselines.

This work is partially supported by National Science Foundation of China (U1833114, 61872201, 61702521) and Science and Technology Development Plan of Tianjin (18ZXZNGX00140, 18ZXZNGX00200).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonawitz, K., et al.: Towards federated learning at scale: system design. In: Proceedings of SysML (2019)

    Google Scholar 

  2. Buda, M.: Brain MRI segmentation: Brain MRI images together with manual FLAIR abnormality segmentation masks (2019). https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation

  3. Buda, M., Saha, A., Mazurowski, M.A.: Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Trans. Comput. Biol. Med. 109, 218–225 (2019)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: Proceedings of ICLR (2014)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. Trans. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. In: Proceedings of ECCV (2017)

    Google Scholar 

  7. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of ECCV, pp. 801–818 (2018)

    Google Scholar 

  8. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Proceedings of NIPS, pp. 2843–2851 (2012)

    Google Scholar 

  9. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  10. Google: Tensorflow federated (2016). https://www.tensorflow.org/federated

  11. Hard, A., et al.: Towards federated learning at scale: system design. arXiv preprint arXiv:1811.03604 (2018)

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  13. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  14. Justin Kirby, C.K.: Tcga-lgg (2019). https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  16. Mazurowski, M.A., et al.: Radiogenomics of lower-grade glioma: algorithmically-assessed tumor shape is associated with tumor genomic subtypes and patient outcomes in a multi-institutional study with The Cancer Genome Atlas data. J. Neurooncol. 133(1), 27–35 (2017). https://doi.org/10.1007/s11060-017-2420-1

    Article  Google Scholar 

  17. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., et al.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of AIStats (2016)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR (2013)

    Google Scholar 

  20. Sheller, M.J., Reina, G.A., Edwards, B., Martin, J., Bakas, S.: Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 92–104. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_9

    Chapter  Google Scholar 

  21. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of CVPR, pp. 1–9 (2015)

    Google Scholar 

  22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of CVPR, pp. 2818–2826 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yi, L., Zhang, J., Zhang, R., Shi, J., Wang, G., Liu, X. (2020). SU-Net: An Efficient Encoder-Decoder Model of Federated Learning for Brain Tumor Segmentation. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61609-0_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61608-3

  • Online ISBN: 978-3-030-61609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics