Abstract
Event element recognition is a significant task in event-based information extraction. In this paper, we propose an event element recognition model based on character-level embedding with semantic features. By extracting character-level features, the proposed model can capture more information of words. Our results show that joint character Convolutional Neural Networks (CNN) and character Bi-directional Long Short-Term Memory Networks (Bi-LSTM) is superior to single character-level model. In addition, adding semantic features such as POS (part-of-speech) and DP (dependency parsing) tends to improve the effect of recognition. We evaluated different methods in CEC (Chinese Emergency Corpus), and the experimental results show that our model can achieve good performance, and the F value of element recognition was 77.17%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
CEC is a Chinese emergency corpus, its open source address is https://github.com/DaseLab/CEC-Corpus.
References
Zong-Tian, L., Meili, H., Wen, Z., Zhaoman, Z., Jianfeng, F.: Research on event-oriented ontology model. Comput. Sci. 36(11), 189–192 (2009)
Zhang, Y., Liu, Z., Zhou, W., National Natural Science Foundation of China (NSFC): Event recognition based on deep learning in Chinese texts. PLoS ONE 11(8), e0160147 (2016)
Han, S., Hao, X., Huang, H.: An event-extraction approach for business analysis from online Chinese news. Electron. Commer. Res. Appl. 28, 244–260 (2018)
Michelioudakis, E., Artikis, A., Paliouras, G.: Semi-supervised online structure learning for composite event recognition. Mach. Learn. 108(7), 1085–1110 (2019). https://doi.org/10.1007/s10994-019-05794-2
Zhang, Y., Liu, Z., Zhou, W., Zhang, Y.: Object recognition base on deep belief network. In: 2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pp. 268–273. IEEE (2015)
Zhang, Z., Xu, W., Chen, Q.: Joint event extraction based on skip-window convolutional neural networks. In: Lin, C.-Y., Xue, N., Zhao, D., Huang, X., Feng, Y. (eds.) ICCPOL/NLPCC -2016. LNCS (LNAI), vol. 10102, pp. 324–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50496-4_27
Glavaš, G., Šnajder, J.: Event graphs for information retrieval and multi-document summarization. Expert Syst. Appl. 41(15), 6904–6916 (2014)
Liu, X., Huet, B.: Event-based cross media question answering. Multimedia Tools Appl. 75(3), 1495–1508 (2014). https://doi.org/10.1007/s11042-014-2085-0
Zhang, H., Liu, X., Pan, H., Song, Y., Leung, C.W.K.: ASER: a large-scale eventuality knowledge graph. In: Proceedings of The Web Conference 2020, pp. 201–211 (2020)
Tan, H., Zhao, T., Zheng, J.: Identification of Chinese event and their argument roles. In: 2008 IEEE 8th International Conference on Computer and Information Technology Workshops, pp. 14–19. IEEE (2008)
Patwardhan, S., Riloff, E.: A unified model of phrasal and sentential evidence for information extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1, vol. 1, pp. 151–160. Association for Computational Linguistics (2009)
Kanhabua, N., Nørvåg, K.: Determining time of queries for re-ranking search results. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 261–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15464-5_27
Chieu, H.L., Ng, H.T.: Named entity recognition with a maximum entropy approach. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 160–163. Association for Computational Linguistics (2003)
Zong-tian, F.J.F.L., Jian-fang, L.W.S.: Feature weighting based event argument identification. Comput. Sci. 37(3), 239–241 (2010)
Zhang, P., Liao, T.: Time and location recognition based on improved k-means algorithm. Comput. Knowl. Technol. 2017(36), 82 (2017)
Ma, C., Shan, H., Ma, T., Zhu, L.: Research on important places identification method based on improved CFSFDP algorithm. Appl. Res. Comput. 34(1), 136–140 (2017)
Wu, Y., Zhang, J.: Chinese event extraction based on attention and semantic features: a bidirectional circular neural network. Future Internet 10(10), 95 (2018)
Zhang, J., Hong, Yu., Zhou, W., Yao, J., Zhang, M.: Interactive learning for joint event and relation extraction. Int. J. Mach. Learn. Cybernet. 11(2), 449–461 (2019). https://doi.org/10.1007/s13042-019-00985-8
Che, W., Li, Z., Liu, T.: LTP: a Chinese language technology platform. In: Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations, pp. 13–16. Association for Computational Linguistics (2010)
Kiros, R., et al.: Skip-thought vectors. In: Advances in Neural Information Processing Systems, pp. 3294–3302 (2015)
Xu, K., Zhou, Z., Hao, T., Liu, W.: A bidirectional LSTM and conditional random fields approach to medical named entity recognition. In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, M.F. (eds.) AISI 2017. AISC, vol. 639, pp. 355–365. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64861-3_33
Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proc ICML, pp. 282–289 (2001)
Wei, L., Feijing, L., Dong, W., Zongtian, L.: A text event elements extraction method based on event ontology. J. Chin. Inf. Process. 30(4), 167–175 (2016)
Khalifa, M., Shaalan, K.: Character convolutions for Arabic named entity recognition with long short-term memory networks. Comput. Speech Lang. 58, 335–346 (2019)
Acknowledgments
This paper was supported by The National key Research and Development Program of China (No. 2017YFE0117500), The Ministry of Education in China Project of Humanities and Social Sciences for Youth Scholars (No. 19YJCZH031), The National Social Science Fund Major of China (No. 19ZDA301).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, W., Wu, Y., Jiang, L., Fu, J., Li, W. (2020). Character-Based LSTM-CRF with Semantic Features for Chinese Event Element Recognition. In: Farkaš, I., Masulli, P., Wermter, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2020. ICANN 2020. Lecture Notes in Computer Science(), vol 12396. Springer, Cham. https://doi.org/10.1007/978-3-030-61609-0_64
Download citation
DOI: https://doi.org/10.1007/978-3-030-61609-0_64
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61608-3
Online ISBN: 978-3-030-61609-0
eBook Packages: Computer ScienceComputer Science (R0)