Abstract
Steganography has been used as a way to hide data in files or in messages traveling on communication channels. Its use can be worrisome when it is used without proper authorization. Recently, it has been detected that there are arbitrary files included in the public blockchain of the Bitcoin cryptocurrency. The main concern arises when such data inserted contains objectionable content, thus compromising blockchain platforms. In this context, this paper presents an analysis of the Blockchain of Bitcoin, based on some proposals for the use of steganography in blockchains and on detection methods of steganographic data. Additionally, it is shown that we found no evidence of steganography data in Bitcoin using these techniques. We conclude by showing that there is no specific approach, so far, for steganalysis in blockchains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alsalami, N., Zhang, B.: Uncontrolled randomness in blockchains: Covert bulletin board for illicit activity. Cryptology ePrint Archive (2018). ia.cr/2018/1184
Alsalami, N., Zhang, B.: Utilizing public blockchains for censorship-circumvention and iot communication. In: 2019 IEEE Conference on Dependable and Secure Computing (DSC), pp. 1–7. IEEE (2019)
Andoni, M., et al.: Blockchain technology in the energy sector: a systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 100, 143–174 (2019)
Andriesse, D., Bos, H.: Instruction-level steganography for covert trigger-based malware. In: Dietrich, S. (ed.) DIMVA 2014. LNCS, vol. 8550, pp. 41–50. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08509-8_3
Antonopoulos, A.M.: Mastering Bitcoin: Programming the Open Blockchain. O’Reilly Media Inc., Newton (2017)
Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain-or-rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 111–126. IEEE (2017)
Bąk, P., Bieniasz, J., Krzemiński, M., Szczypiorski, K.: Application of perfectly undetectable network steganography method for malware hidden communication. In: 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), pp. 34–38. IEEE (2018)
Bassham, L.E., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, National Institute of Standards and Technology (NIST) (2010)
Berndt, S., Liśkiewicz, M.: Provable secure universal steganography of optimal rate: Provably secure steganography does not necessarily imply one-way functions. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 81–92. ACM (2016)
Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8_21
Cole, E.: Hiding in Plain Sight. Wiley, Hoboken (2002)
Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al.: Blockchain technology: Beyond bitcoin. Appl. Innov. 2(6–10), 71 (2016)
Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_44
Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the use of blockchain for the internet of things. IEEE Access 6, 32979–33001 (2018)
Fionov, A.: Exploring covert channels in bitcoin transactions. In: 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), pp. 0059–0064. IEEE (2019)
Von zur Gathen, J.: Cryptoschool. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48425-8
Henry, R., Herzberg, A., Kate, A.: Blockchain access privacy: challenges and directions. IEEE Secur. Priv. 16(4), 38–45 (2018). https://doi.org/10.1109/MSP.2018.3111245
Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_6
Kucner, D., Kutylowski, M.: Stochastic kleptography detection. In: Public-Key Cryptography and Computational Number Theory, pp. 137–149 (2001)
Matzutt, R., Henze, M., Ziegeldorf, J.H., Hiller, J., Wehrle, K.: Thwarting unwanted blockchain content insertion. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp. 364–370. IEEE (2018)
Matzutt, R., et al.: A quantitative analysis of the impact of arbitrary blockchain content on bitcoin. In: Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 420–438. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6_23
Mazurczyk, W., Caviglione, L.: Information hiding as a challenge for malware detection (2015). arXiv preprint arXiv:1504.04867
Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf
OpenSSL.org.: OpenSSL Cryptography and SSL/TLS Toolkit. https://www.openssl.org/
Partala, J.: Provably secure covert communication on blockchain. Cryptography 2(3), 18 (2018)
Provos, N., Honeyman, P.: Hide and seek: an introduction to steganography. IEEE Secur. Priv. 1(3), 32–44 (2003)
Puthal, D., Malik, N., Mohanty, S.P., Kougianos, E., Das, G.: Everything you wanted to know about the blockchain: its promise, components, processes, and problems. IEEE Consum. Electron. Mag. 7(4), 6–14 (2018)
Radanović, I., Likić, R.: Opportunities for use of blockchain technology in medicine. Appl. Health Econ. Health Policy 16(5), 583–590 (2018)
Raggo, M.T., Hosmer, C.: Data hiding: exposing concealed data in multimedia, operating systems, mobile devices and network protocols. Newnes (2012)
Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In: DFRWS (2005)
Scott, B., Loonam, J., Kumar, V.: Exploring the rise of blockchain technology: towards distributed collaborative organizations. Strat. Change 26(5), 423–428 (2017)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 457–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_29
Stallings, W.: Cryptography and Network Security: Principles and Practice, 7th edn. Pearson, Upper Saddle River (2017)
Teşeleanu, G.: Subliminal hash channels. Cryptology ePrint Archive, Report 2019/1112 (2019)
Walker, J.: Ent: a pseudorandom number sequence test program. Software and documentation (2008). http://www.fourmilab.ch/random/
Williams, S.P.: Blockchain: The Next Everything. Scribner, New York (2019)
Wu, C.K.: Hash channels. Comput. Secur. 24(8), 653–661 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Giron, A.A., Martina, J.E., Custódio, R. (2020). Bitcoin Blockchain Steganographic Analysis. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2020. Lecture Notes in Computer Science(), vol 12418. Springer, Cham. https://doi.org/10.1007/978-3-030-61638-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-61638-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61637-3
Online ISBN: 978-3-030-61638-0
eBook Packages: Computer ScienceComputer Science (R0)