Skip to main content

A Comparison of Weight Initializers in Deep Learning-Based Side-Channel Analysis

  • Conference paper
  • First Online:
Applied Cryptography and Network Security Workshops (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12418))

Included in the following conference series:

Abstract

The usage of deep learning in profiled side-channel analysis requires a careful selection of neural network hyperparameters. In recent publications, different network architectures have been presented as efficient profiled methods against protected AES implementations. Indeed, completely different convolutional neural network models have presented similar performance against public side-channel traces databases. In this work, we analyze how weight initializers’ choice influences deep neural networks’ performance in the profiled side-channel analysis. Our results show that different weight initializers provide radically different behavior. We observe that even high-performing initializers can reach significantly different performance when conducting multiple training phases. Finally, we found that this hyperparameter is more dependent on the choice of dataset than other, commonly examined, hyperparameters. When evaluating the connections with other hyperparameters, the biggest connection is observed with activation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.dpacontest.org/v4/42_traces.php.

  2. 2.

    https://github.com/ikizhvatov/randomdelays-traces.

  3. 3.

    https://github.com/ANSSI-FR/ASCAD.

References

  1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-channel analysis and introduction to ASCAD database. J. Cryptographic Eng. 10(2), 163–188 (2020). https://doi.org/10.1007/s13389-019-00220-8

  2. Bhasin, S., Bruneau, N., Danger, J.-L., Guilley, S., Najm, Z.: Analysis and improvements of the DPA contest v4 implementation. In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 201–218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_14

    Chapter  MATH  Google Scholar 

  3. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data augmentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_3

    Chapter  Google Scholar 

  4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3

    Chapter  Google Scholar 

  5. Chollet, F., et al.: Keras (2015). https://keras.io

  6. Coron, J.S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. Cryptology ePrint Archive, Report 2009/419 (2009). https://eprint.iacr.org/2009/419

  7. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE International Conference on Computer Vision (ICCV 2015) 1502, February 2015. https://doi.org/10.1109/ICCV.2015.123

  9. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic devices using support vector machines. In: COSADE, pp. 249–264 (2012)

    Google Scholar 

  10. Keras: Layer weight initializers. https://keras.io/api/layers/initializers/

  11. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise: Unleashing the power of convolutional neural networks for profiled side-channel analysis. Cryptology ePrint Archive, Report 2018/1023 (2018). https://eprint.iacr.org/2018/1023

  12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, December 2014

    Google Scholar 

  13. Koturwar, S., Merchant, S.: Weight initialization of deep neural networks (DNNS) using data statistics. CoRR abs/1710.10570 (2017). http://arxiv.org/abs/1710.10570

  14. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: An approach based on machine learning. Int. J. Appl. Cryptol. 3(2), 97–115 (2014). https://doi.org/10.1504/IJACT.2014.062722

  15. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Template attacks vs. machine learning revisited (and the curse of dimensionality in side-channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 20–33. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21476-4_2

    Chapter  Google Scholar 

  16. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1

    Chapter  Google Scholar 

  17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Advances in Information Security. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  18. Peng, A.Y., Sing Koh, Y., Riddle, P., Pfahringer, B.: Using supervised pretraining to improve generalization of neural networks on binary classification problems. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 410–425. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_25

    Chapter  Google Scholar 

  19. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237 (2018). https://doi.org/10.13154/tches.v2019.i1.209-237, https://tches.iacr.org/index.php/TCHES/article/view/7339

  20. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10

    Chapter  Google Scholar 

  21. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning techniques for side-channel analysis and introduction to ascad database. Cryptology ePrint Archive, Report 2018/053 (2018). https://eprint.iacr.org/2018/053

  22. Xavier Glorot, Y.B.: Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 9, 249–256 (2010)

    Google Scholar 

  23. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptographic Hardware Embed. Syst. 2020(1), 1–36 (2019). https://doi.org/10.13154/tches.v2020.i1.1-36, https://tches.iacr.org/index.php/TCHES/article/view/8391

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Li , Marina Krček or Guilherme Perin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Krček, M., Perin, G. (2020). A Comparison of Weight Initializers in Deep Learning-Based Side-Channel Analysis. In: Zhou, J., et al. Applied Cryptography and Network Security Workshops. ACNS 2020. Lecture Notes in Computer Science(), vol 12418. Springer, Cham. https://doi.org/10.1007/978-3-030-61638-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61638-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61637-3

  • Online ISBN: 978-3-030-61638-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics