Abstract
A module for assessing the investment risks of a virtual IT company has been developed. It enables to reduce the time spent on assessing the inves-tor’s risks of a virtual IT company. A detailed justification of each selected risk parameter that influences on the success of the investment project of the virtual IT Company has done. A developed algorithm for assessing the investment risk of the virtual IT company is based on machine learning and using the expert scoring method (10 experts from 20 implemented projects were involved) by 23 risk parameters. Forecasting of investment risk assess-ment modeling of the virtual IT company using machine learning is based on eight methods: Support Vector Classifier, Stochastic Gradient Decent Classifier, Random Forest Classifier, Decision Tree Classifier, Gaussian Na-ive Bayes, K-Neighbors Classifier, Ada Boost Classifier, Logistic Regression. In addition, a module was developed to support decision-making based on three methods with the best forecast, namely: Support Vector Classifier, Random Forest Classifier, K-Neighbors Classifier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
About approval of the methodology for identifying risks of public-private partnership, their assessment and determination of the form of their management (2011)
Ahmad, Z., Thaheem, M.J., Maqsoom, A.: Building information modeling as a risk transformer: an evolutionary insight into the project uncertainty. Autom. Constr. 92, 103–119 (2018). https://doi.org/10.1016/j.autcon.2018.03.032
Alam, S., Sonbhadra, S.K., Agarwal, S., Nagabhushan, P.: One-class support vector classifiers: a survey. Knowl.-Based Syst. 196, 105754 (2020). https://doi.org/10.1016/j.knosys.2020.105754
Anthony, B., Che Pa, N., Haizan Nor, R., Yah Josoh, Y.: The development and initial results of a component model for risk mitigation in IT governance. J. Sci. Technol. Innov. Policy 2(2), 1–13 (2017)
Apatova, N.: Mechanisms and resources of virtual enterprise risk management. In: Proceedings of the International Scientific Conference “Far East Con" (ISCFEC 2020), pp. 834–844 (2020). https://doi.org/10.2991/aebmr.k.200312.116
Ballings, M., Van den Poel, D., Hespeels, N., Gryp, R.: Evaluating multiple classifiers for stock price direction prediction. Expert Syst. Appl. 42(20), 7046–7056 (2015). https://doi.org/10.1016/j.eswa.2015.05.013
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989). https://doi.org/10.1145/76359.76371
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/a:1010933404324
Cabral, J.S.: Project risk management strategies for IT project managers. Ph.D. thesis, Walden University (2017)
Chapman, C., Ward, S.: Project Risk Management: Processes, Techniques and Insights. Wiley, Hoboken (1996)
Chen, T.H., Ho, R.J., Liu, Y.W.: Investigating the predictive power of investor personality in forecasting investment performance using machine learning models. Comput. Hum. Behav. 101 (2018). https://doi.org/10.1016/j.chb.2018.09.027
Costa, N.L., Llobodanin, L.A.G., Castro, I.A., Barbosa, R.: Using support vector machines and neural networks to classify merlot wines from South America. Inf. Process. Agric. 5(2), 265–278 (2018). https://doi.org/10.1016/j.inpa.2018.10.003
Davidow, W.H.: The virtual corporation: Structuring and revitalizing the corporation for the 21st century. Harpercollins (1992)
Dong, J.Y., Wan, S.P.: Virtual enterprise partner selection integrating linmap and topsis. J. Oper. Res. Soc. 67(10), 1288–1308 (2016). https://doi.org/10.1057/jors.2016.22
Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining CRPIT 2002 (2002)
Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 6(4), 325–327 (1976). https://doi.org/10.1109/tsmc.1976.5408784
Esposito, E., Evangelista, P.: Investigating virtual enterprise models - literature review and empirical findings. Int. J. Prod. Econ. 148, 145–157 (2014). https://doi.org/10.1016/j.ijpe.2013.10.003
Ferreira, L., Lopes, N., Avila, P.S., et al.: Virtual enterprise integration management based on a meta-enterprise - a PMBoK approach. Procedia Comput. Sci. 121, 1112–1118 (2017). https://doi.org/10.1016/j.procs.2017.12.120
Golovko, V., Savitsky, Y., Laopoulos, T., Sachenko, A., Grandinetti, L.: Technique of learning rate estimation for efficient training of MLP. In: Proceedings of the International Joint Conference on Neural Networks, pp. 323–328 (2000)
Gou, H., Huang, B., Liu, W., Li, X.: A framework for virtual enterprise operation management. Comput. Ind. 50(3), 333–352 (2003). https://doi.org/10.1016/s0166-3615(03)00021-6
Hassanat, A.B., Abbadi, M.A., Altarawneh, G.A., Alhasanat, A.A.: Solving the problem of the k parameter in the KNN classifier using an ensemble learning approach (2014). https://arxiv.org/abs/1409.0919
He, W., Liu, Y.: To regularize or not: revisiting SGD with simple algorithms and experimental studies. Expert Syst. Appl. 112, 1–14 (2018). https://doi.org/10.1016/j.eswa.2018.06.026
Hwang, B.G., Chen, M.: Sustainable risk management in the construction industry: lessons learned from the IT industry. Technol. Econ. Dev. Econ. 21(2), 216–231 (2015). https://doi.org/10.3846/20294913.2014.979455
Javani, B., Rwelamila, P.M.D.: Risk management in it projects - a case of the South African public sector. Int. J. Manag. Projects Bus. 9(2), 389–413 (2016). https://doi.org/10.1108/ijmpb-07-2015-0055
John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers (2013). https://arxiv.org/abs/1302.4964
Kanovskyi, A., Sachenko, A., Kochan, V.: Virtual spatial displaying of dynamic graphic objects for IoT. In: Proceedings of the 2019 3rd International Conference on Advanced Information and Communications Technologies, AICT 2019, pp. 254–257 (2019)
Kleinbaum, D.G., Klein, M.: Introduction to logistic regression. In: Kleinbaum, D.G., Klein, M. (eds.) Logistic Regression. SBH, pp. 1–39. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1742-3_1
Kumsuprom, S., Corbitt, B., Pittayachawan, S.: ICT risk management in organizations: case studies in Thai business. In: Proceedings of the Australasian Conference on Information Systems ACIS 2008, p. artt. no. 98 (2008). https://doi.org/10.13140/2.1.2489.1689
Lipyanina, H., Sachenko, A., Lendyuk, T., Nadvynychny, S., Grodskyi, S.: Decision tree based targeting model of customer interaction with business page. In: Proceedings of the third International Workshop on Computer Modeling and Intelligent Systems (CMIS-2020), CEUR Workshop Proceedings, vol. 2608, pp. 1001–1012 (2020). http://ceur-ws.org/Vol-2608/paper75.pdf
Locatelli, G., Invernizzi, D.C., Mancini, M.: Investment and risk appraisal in energy storage systems: a real options approach. Energy 104, 114–131 (2016). https://doi.org/10.1016/j.energy.2016.03.098
Lu, F., Bi, H., Huang, M., Wang, X.: Virtual enterprise risk management under asymmetric information. In: Proceedings of the 2013 10th International Conference on Service Systems and Service Management, pp. 202–207 (2013). https://doi.org/10.1109/icsssm.2013.6602655
Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H.: The risk management modelling in multi project environment. In: Proceedings of the 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2017), pp. 32–35 (2017). https://doi.org/10.1109/stc-csit.2017.8098730
Maillo, J., Ramirez, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl.-Based Syst. 117, 3–15 (2017). https://doi.org/10.1016/j.knosys.2016.06.012
Marodin, G.A., Saurin, T.A., Tortorella, G.L., Fettermann, D.C.: Model of risk interactions hindering lean production implementation. Gestao Producao 25(4), 696–712 (2018)
Martinez, M., Fouletier, P., Park, K., Favrel, J.: Virtual enterprise - organisation, evolution and control. Int. J. Prod. Econ. 74(1–3), 225–238 (2001). https://doi.org/10.1016/s0925-5273(01)00129-3
Meng, F., Wang, N., Xu, Y.: Interval neutrosophic preference relations and their application in virtual enterprise partner selection. J. Ambient Intell. Hum. Comput. 10, 5007–5036 (2019). https://doi.org/10.1007/s12652-019-01178-5
Noraini, C., Bokolo, A., et al.: A review on risk mitigation of IT governance. Inf. Technol. J. 14(1), 1–9 (2015). https://doi.org/10.3923/itj.2015.1.9
Pa, N.C., Anthony, B.: A model of mitigating risk for it organisations. In: Proceedings of the IEEE 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), pp. 49–54 (2015). https://doi.org/10.1109/ICSECS.2015.7333082
Park, K.H., Favrel, J.: Virtual enterprise - information system and networking solution. Comput. Ind. Eng. 37(1–2), 441–444 (1999). https://doi.org/10.1016/s0360-8352(99)00113-8
Sadigh, B.L., Nikghadam, S., Ozbayoglu, A.M., Unver, H.O., Dogdu, E., Kilic, S.E.: An ontology-based multi-agent virtual enterprise system (OMAVE): part 2: partner selection. Int. J. Comput. Integr. Manuf. 30(10), 1072–1092 (2017). https://doi.org/10.1080/0951192x.2017.1285424
Sadigh, B.L., Unver, H.O., Nikghadam, S., Dogdu, E., Ozbayoglu, A.M., Kilic, S.E.: An ontology-based multi-agent virtual enterprise system (OMAVE): part 1: domain modelling and rule management. Int. J. Comput. Integr. Manuf. 30(2–3), 320–343 (2016). https://doi.org/10.1080/0951192x.2016.1145811
Schapire, R.E.: Explaining adaboost. In: Scholkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 37–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41136-6_5
Shu, C., Dosyn, D., Lytvyn, V., Vysotska, V., Sachenko, A., Jun, S.: Building of the predicate recognition system for the NLP ontology learning module. In: Proceedings of the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2019, pp. 802–808 (2019). https://doi.org/10.1109/IDAACS.2019.8924410
Swain, P.H., Hauska, H.: The decision tree classifier: design and potential. IEEE Trans. Geosci. Electron. 15(3), 142–147 (1977). https://doi.org/10.1109/tge.1977.6498972
Swami, R., Jain, T.K.: Managing investment risks: Modern vs traditional knowledge and practices (2019). https://doi.org/10.2139/ssrn.3310062, https://ssrn.com/abstract=3310062
Tao, T., Yan, K., Yang, S.: Classification of mutual fund investment types with advanced machine learning models. In: Proceedings of the 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science and Engineering (BCD), pp. 84–89 (2019)
Tsvetkov, V.Y., Shaytura, S.V., Sultaeva, N.L.: Digital enterprise management in cyberspace. In: Proceedings of the 2nd International Scientific and Practical Conference “Modern Management Trends and the Digital Economy: from Regional Development to Global Economic Growth” (MTDE 2020), pp. 361–365 (2020). https://doi.org/10.2991/aebmr.k.200502.059
Vezhnevets, A., Vezhnevets, V.: Modest adaboost-teaching adaboost to generalize better. Graphicon 12(5), 987–997 (2005)
Wan, J., Jiang, Q., Xie, L.: Research on risk factors of entrepreneurship in internet industry with the grounded theory. In: Proceedings of the Wuhan International Conference on e-Business, Association for Information Systems, pp. 99–107 (2017)
Wang, N.: Research on virtual enterprise risk control based on optimization. Adv. Mater. Res. 129–131, 1267–1272 (2010). https://doi.org/10.4028/www.scientific.net/amr.129-131.1267
Yang, M., Blyth, W.: Modeling investment risks and uncertainties with real options approach. In: International Energy Agency Working Paper Series. p. Paper Number LTO/2007/WP01 (2007)
Yuan, M.Q., Li, Z.F., Li, L.: SI system housing virtual enterprise partners selection based on vector angle cosine. J. Civ. Eng. Manag. 35, 117–122 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Lipyanina, H., Maksymovych, V., Sachenko, A., Lendyuk, T., Fomenko, A., Kit, I. (2020). Assessing the Investment Risk of Virtual IT Company Based on Machine Learning. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds) Data Stream Mining & Processing. DSMP 2020. Communications in Computer and Information Science, vol 1158. Springer, Cham. https://doi.org/10.1007/978-3-030-61656-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-61656-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61655-7
Online ISBN: 978-3-030-61656-4
eBook Packages: Computer ScienceComputer Science (R0)