Skip to main content

Assessing the Investment Risk of Virtual IT Company Based on Machine Learning

  • Conference paper
  • First Online:
Data Stream Mining & Processing (DSMP 2020)

Abstract

A module for assessing the investment risks of a virtual IT company has been developed. It enables to reduce the time spent on assessing the inves-tor’s risks of a virtual IT company. A detailed justification of each selected risk parameter that influences on the success of the investment project of the virtual IT Company has done. A developed algorithm for assessing the investment risk of the virtual IT company is based on machine learning and using the expert scoring method (10 experts from 20 implemented projects were involved) by 23 risk parameters. Forecasting of investment risk assess-ment modeling of the virtual IT company using machine learning is based on eight methods: Support Vector Classifier, Stochastic Gradient Decent Classifier, Random Forest Classifier, Decision Tree Classifier, Gaussian Na-ive Bayes, K-Neighbors Classifier, Ada Boost Classifier, Logistic Regression. In addition, a module was developed to support decision-making based on three methods with the best forecast, namely: Support Vector Classifier, Random Forest Classifier, K-Neighbors Classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. About approval of the methodology for identifying risks of public-private partnership, their assessment and determination of the form of their management (2011)

    Google Scholar 

  2. Ahmad, Z., Thaheem, M.J., Maqsoom, A.: Building information modeling as a risk transformer: an evolutionary insight into the project uncertainty. Autom. Constr. 92, 103–119 (2018). https://doi.org/10.1016/j.autcon.2018.03.032

    Article  Google Scholar 

  3. Alam, S., Sonbhadra, S.K., Agarwal, S., Nagabhushan, P.: One-class support vector classifiers: a survey. Knowl.-Based Syst. 196, 105754 (2020). https://doi.org/10.1016/j.knosys.2020.105754

    Article  Google Scholar 

  4. Anthony, B., Che Pa, N., Haizan Nor, R., Yah Josoh, Y.: The development and initial results of a component model for risk mitigation in IT governance. J. Sci. Technol. Innov. Policy 2(2), 1–13 (2017)

    Google Scholar 

  5. Apatova, N.: Mechanisms and resources of virtual enterprise risk management. In: Proceedings of the International Scientific Conference “Far East Con" (ISCFEC 2020), pp. 834–844 (2020). https://doi.org/10.2991/aebmr.k.200312.116

  6. Ballings, M., Van den Poel, D., Hespeels, N., Gryp, R.: Evaluating multiple classifiers for stock price direction prediction. Expert Syst. Appl. 42(20), 7046–7056 (2015). https://doi.org/10.1016/j.eswa.2015.05.013

    Article  Google Scholar 

  7. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36(4), 929–965 (1989). https://doi.org/10.1145/76359.76371

    Article  MathSciNet  MATH  Google Scholar 

  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/a:1010933404324

    Article  MATH  Google Scholar 

  9. Cabral, J.S.: Project risk management strategies for IT project managers. Ph.D. thesis, Walden University (2017)

    Google Scholar 

  10. Chapman, C., Ward, S.: Project Risk Management: Processes, Techniques and Insights. Wiley, Hoboken (1996)

    Google Scholar 

  11. Chen, T.H., Ho, R.J., Liu, Y.W.: Investigating the predictive power of investor personality in forecasting investment performance using machine learning models. Comput. Hum. Behav. 101 (2018). https://doi.org/10.1016/j.chb.2018.09.027

  12. Costa, N.L., Llobodanin, L.A.G., Castro, I.A., Barbosa, R.: Using support vector machines and neural networks to classify merlot wines from South America. Inf. Process. Agric. 5(2), 265–278 (2018). https://doi.org/10.1016/j.inpa.2018.10.003

    Article  Google Scholar 

  13. Davidow, W.H.: The virtual corporation: Structuring and revitalizing the corporation for the 21st century. Harpercollins (1992)

    Google Scholar 

  14. Dong, J.Y., Wan, S.P.: Virtual enterprise partner selection integrating linmap and topsis. J. Oper. Res. Soc. 67(10), 1288–1308 (2016). https://doi.org/10.1057/jors.2016.22

    Article  Google Scholar 

  15. Du, W., Zhan, Z.: Building decision tree classifier on private data. In: Proceedings of the IEEE International Conference on Privacy, Security and Data Mining CRPIT 2002 (2002)

    Google Scholar 

  16. Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 6(4), 325–327 (1976). https://doi.org/10.1109/tsmc.1976.5408784

    Article  Google Scholar 

  17. Esposito, E., Evangelista, P.: Investigating virtual enterprise models - literature review and empirical findings. Int. J. Prod. Econ. 148, 145–157 (2014). https://doi.org/10.1016/j.ijpe.2013.10.003

    Article  Google Scholar 

  18. Ferreira, L., Lopes, N., Avila, P.S., et al.: Virtual enterprise integration management based on a meta-enterprise - a PMBoK approach. Procedia Comput. Sci. 121, 1112–1118 (2017). https://doi.org/10.1016/j.procs.2017.12.120

    Article  Google Scholar 

  19. Golovko, V., Savitsky, Y., Laopoulos, T., Sachenko, A., Grandinetti, L.: Technique of learning rate estimation for efficient training of MLP. In: Proceedings of the International Joint Conference on Neural Networks, pp. 323–328 (2000)

    Google Scholar 

  20. Gou, H., Huang, B., Liu, W., Li, X.: A framework for virtual enterprise operation management. Comput. Ind. 50(3), 333–352 (2003). https://doi.org/10.1016/s0166-3615(03)00021-6

    Article  Google Scholar 

  21. Hassanat, A.B., Abbadi, M.A., Altarawneh, G.A., Alhasanat, A.A.: Solving the problem of the k parameter in the KNN classifier using an ensemble learning approach (2014). https://arxiv.org/abs/1409.0919

  22. He, W., Liu, Y.: To regularize or not: revisiting SGD with simple algorithms and experimental studies. Expert Syst. Appl. 112, 1–14 (2018). https://doi.org/10.1016/j.eswa.2018.06.026

    Article  Google Scholar 

  23. Hwang, B.G., Chen, M.: Sustainable risk management in the construction industry: lessons learned from the IT industry. Technol. Econ. Dev. Econ. 21(2), 216–231 (2015). https://doi.org/10.3846/20294913.2014.979455

    Article  Google Scholar 

  24. Javani, B., Rwelamila, P.M.D.: Risk management in it projects - a case of the South African public sector. Int. J. Manag. Projects Bus. 9(2), 389–413 (2016). https://doi.org/10.1108/ijmpb-07-2015-0055

    Article  Google Scholar 

  25. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers (2013). https://arxiv.org/abs/1302.4964

  26. Kanovskyi, A., Sachenko, A., Kochan, V.: Virtual spatial displaying of dynamic graphic objects for IoT. In: Proceedings of the 2019 3rd International Conference on Advanced Information and Communications Technologies, AICT 2019, pp. 254–257 (2019)

    Google Scholar 

  27. Kleinbaum, D.G., Klein, M.: Introduction to logistic regression. In: Kleinbaum, D.G., Klein, M. (eds.) Logistic Regression. SBH, pp. 1–39. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1742-3_1

  28. Kumsuprom, S., Corbitt, B., Pittayachawan, S.: ICT risk management in organizations: case studies in Thai business. In: Proceedings of the Australasian Conference on Information Systems ACIS 2008, p. artt. no. 98 (2008). https://doi.org/10.13140/2.1.2489.1689

  29. Lipyanina, H., Sachenko, A., Lendyuk, T., Nadvynychny, S., Grodskyi, S.: Decision tree based targeting model of customer interaction with business page. In: Proceedings of the third International Workshop on Computer Modeling and Intelligent Systems (CMIS-2020), CEUR Workshop Proceedings, vol. 2608, pp. 1001–1012 (2020). http://ceur-ws.org/Vol-2608/paper75.pdf

  30. Locatelli, G., Invernizzi, D.C., Mancini, M.: Investment and risk appraisal in energy storage systems: a real options approach. Energy 104, 114–131 (2016). https://doi.org/10.1016/j.energy.2016.03.098

    Article  Google Scholar 

  31. Lu, F., Bi, H., Huang, M., Wang, X.: Virtual enterprise risk management under asymmetric information. In: Proceedings of the 2013 10th International Conference on Service Systems and Service Management, pp. 202–207 (2013). https://doi.org/10.1109/icsssm.2013.6602655

  32. Lytvyn, V., Vysotska, V., Veres, O., Rishnyak, I., Rishnyak, H.: The risk management modelling in multi project environment. In: Proceedings of the 2017 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT 2017), pp. 32–35 (2017). https://doi.org/10.1109/stc-csit.2017.8098730

  33. Maillo, J., Ramirez, S., Triguero, I., Herrera, F.: kNN-IS: an iterative spark-based design of the k-nearest neighbors classifier for big data. Knowl.-Based Syst. 117, 3–15 (2017). https://doi.org/10.1016/j.knosys.2016.06.012

    Article  Google Scholar 

  34. Marodin, G.A., Saurin, T.A., Tortorella, G.L., Fettermann, D.C.: Model of risk interactions hindering lean production implementation. Gestao Producao 25(4), 696–712 (2018)

    Article  Google Scholar 

  35. Martinez, M., Fouletier, P., Park, K., Favrel, J.: Virtual enterprise - organisation, evolution and control. Int. J. Prod. Econ. 74(1–3), 225–238 (2001). https://doi.org/10.1016/s0925-5273(01)00129-3

    Article  Google Scholar 

  36. Meng, F., Wang, N., Xu, Y.: Interval neutrosophic preference relations and their application in virtual enterprise partner selection. J. Ambient Intell. Hum. Comput. 10, 5007–5036 (2019). https://doi.org/10.1007/s12652-019-01178-5

    Article  Google Scholar 

  37. Noraini, C., Bokolo, A., et al.: A review on risk mitigation of IT governance. Inf. Technol. J. 14(1), 1–9 (2015). https://doi.org/10.3923/itj.2015.1.9

    Article  Google Scholar 

  38. Pa, N.C., Anthony, B.: A model of mitigating risk for it organisations. In: Proceedings of the IEEE 2015 4th International Conference on Software Engineering and Computer Systems (ICSECS), pp. 49–54 (2015). https://doi.org/10.1109/ICSECS.2015.7333082

  39. Park, K.H., Favrel, J.: Virtual enterprise - information system and networking solution. Comput. Ind. Eng. 37(1–2), 441–444 (1999). https://doi.org/10.1016/s0360-8352(99)00113-8

    Article  Google Scholar 

  40. Sadigh, B.L., Nikghadam, S., Ozbayoglu, A.M., Unver, H.O., Dogdu, E., Kilic, S.E.: An ontology-based multi-agent virtual enterprise system (OMAVE): part 2: partner selection. Int. J. Comput. Integr. Manuf. 30(10), 1072–1092 (2017). https://doi.org/10.1080/0951192x.2017.1285424

    Article  Google Scholar 

  41. Sadigh, B.L., Unver, H.O., Nikghadam, S., Dogdu, E., Ozbayoglu, A.M., Kilic, S.E.: An ontology-based multi-agent virtual enterprise system (OMAVE): part 1: domain modelling and rule management. Int. J. Comput. Integr. Manuf. 30(2–3), 320–343 (2016). https://doi.org/10.1080/0951192x.2016.1145811

    Article  Google Scholar 

  42. Schapire, R.E.: Explaining adaboost. In: Scholkopf, B., Luo, Z., Vovk, V. (eds.) Empirical Inference, pp. 37–52. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41136-6_5

  43. Shu, C., Dosyn, D., Lytvyn, V., Vysotska, V., Sachenko, A., Jun, S.: Building of the predicate recognition system for the NLP ontology learning module. In: Proceedings of the 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2019, pp. 802–808 (2019). https://doi.org/10.1109/IDAACS.2019.8924410

  44. Swain, P.H., Hauska, H.: The decision tree classifier: design and potential. IEEE Trans. Geosci. Electron. 15(3), 142–147 (1977). https://doi.org/10.1109/tge.1977.6498972

    Article  Google Scholar 

  45. Swami, R., Jain, T.K.: Managing investment risks: Modern vs traditional knowledge and practices (2019). https://doi.org/10.2139/ssrn.3310062, https://ssrn.com/abstract=3310062

  46. Tao, T., Yan, K., Yang, S.: Classification of mutual fund investment types with advanced machine learning models. In: Proceedings of the 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science and Engineering (BCD), pp. 84–89 (2019)

    Google Scholar 

  47. Tsvetkov, V.Y., Shaytura, S.V., Sultaeva, N.L.: Digital enterprise management in cyberspace. In: Proceedings of the 2nd International Scientific and Practical Conference “Modern Management Trends and the Digital Economy: from Regional Development to Global Economic Growth” (MTDE 2020), pp. 361–365 (2020). https://doi.org/10.2991/aebmr.k.200502.059

  48. Vezhnevets, A., Vezhnevets, V.: Modest adaboost-teaching adaboost to generalize better. Graphicon 12(5), 987–997 (2005)

    Google Scholar 

  49. Wan, J., Jiang, Q., Xie, L.: Research on risk factors of entrepreneurship in internet industry with the grounded theory. In: Proceedings of the Wuhan International Conference on e-Business, Association for Information Systems, pp. 99–107 (2017)

    Google Scholar 

  50. Wang, N.: Research on virtual enterprise risk control based on optimization. Adv. Mater. Res. 129–131, 1267–1272 (2010). https://doi.org/10.4028/www.scientific.net/amr.129-131.1267

    Article  Google Scholar 

  51. Yang, M., Blyth, W.: Modeling investment risks and uncertainties with real options approach. In: International Energy Agency Working Paper Series. p. Paper Number LTO/2007/WP01 (2007)

    Google Scholar 

  52. Yuan, M.Q., Li, Z.F., Li, L.: SI system housing virtual enterprise partners selection based on vector angle cosine. J. Civ. Eng. Manag. 35, 117–122 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Lendyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lipyanina, H., Maksymovych, V., Sachenko, A., Lendyuk, T., Fomenko, A., Kit, I. (2020). Assessing the Investment Risk of Virtual IT Company Based on Machine Learning. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds) Data Stream Mining & Processing. DSMP 2020. Communications in Computer and Information Science, vol 1158. Springer, Cham. https://doi.org/10.1007/978-3-030-61656-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61656-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61655-7

  • Online ISBN: 978-3-030-61656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics