Skip to main content

Technique of Metals Strength Properties Diagnostics Based on the Complex Use of Fuzzy Inference System and Hybrid Neural Network

  • Conference paper
  • First Online:
Data Stream Mining & Processing (DSMP 2020)

Abstract

The results of the research concerning development of the technique of metals strength properties diagnostics using combination of the methods of non-destructive control based on the complex use of fuzzy inference system and hybrid neural network are presented in the paper. The acoustic non-destructive control method, the electro-magnetic method and hardness control were used as the control methods within the framework of the proposed technique. The selection of the optimal combination of the methods was performed using fuzzy inference system, in which, the final solution was taken applying Harrington desirability function. The metal strength properties were determined using hybrid neural network the basis of which are fuzzy neurons. The simulation results with the use of samples of Y8 steel have shown that the combination of acoustic and electromegnetic methods of non-destructive testing is an optimal in terms of maximum value of heneral Harrington desiribility index and the hybrid neural network with two layers of neurons and triangular membership functions with combine algorithm of network training is an optimal one in terms of relative error of metals strength properties evaluation. To our mind, the proposed technique may allow us to increase the exactness of metals strength properties determination when the non-destructive methods of control are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alakhras, M., Oussalah, M., Hussein, M.: A survey of fuzzy logic in wireless localization. EURASIP J. Wirel. Commun. Netw. 1, art. no. 89 (2020). https://doi.org/10.1186/s13638-020-01703-7

  2. Ardjmand, E., Ghalehkhondabi, I., et al.: A hybrid artificial neural network, genetic algorithm and column generation heuristic for minimizing makespan in manual order picking operations. Expert Syst. Appl. 159, 113566 (2020). https://doi.org/10.1016/j.eswa.2020.113566

    Article  Google Scholar 

  3. Babichev, S., Lytvynenko, V., Skvor, J., Fiser, J.: Model of the objective clustering inductive technology of gene expression profiles based on SOTA and DBSCAN clustering algorithms. In: Shakhovska, N., Stepashko, V. (eds.) CSIT 2017. AISC, vol. 689, pp. 21–39. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70581-1_2

    Chapter  Google Scholar 

  4. Buhay, N., Lebedev, A., Sharko, A.: Comprehensive control of 12KH1MF steel during technical diagnostics of power equipment metals. Russ. J. Nondestr. Test. 5, 47–53 (1992)

    Google Scholar 

  5. Ceballos-Francisco, D., García-Carrillo, N., Cuesta, A., Esteban, M.: Radiological characterization of gilthead seabream (Sparus aurata) fat by x-ray micro-computed tomography. Sci. Rep. 10(1), art. no. 10527 (2020). https://doi.org/10.1038/s41598-020-67435-2

  6. Ghiasi, B., Sheikhian, H., Zeynolabedin, A., Niksokhan, M.: Granular computing-neural network model for prediction of longitudinal dispersion coefficients in rivers. Water Sci. Technolol. 80(10), 1880–1892 (2020). https://doi.org/10.2166/wst.2020.006

    Article  Google Scholar 

  7. Harrington, J.: The desirability function. Ind. Qual. Control 21(8), 494–498 (1965)

    Google Scholar 

  8. Imashuku, S., Wagatsuma, K.: X-ray-excited optical luminescence imaging for on-site analysis of alumina scale. Oxid. Met. 94(1), 27–36 (2020). https://doi.org/10.1007/s11085-020-09976-5

    Article  Google Scholar 

  9. Izonin, I., Kryvinska, N., Vitynskyi, P., Tkachenko, R., Zub, K.: GRNN approach towards missing data recovery between IoT systems. In: Barolli, L., Nishino, H., Miwa, H. (eds.) INCoS 2019. AISC, vol. 1035, pp. 445–453. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29035-1_43

    Chapter  Google Scholar 

  10. Jain, D., Kumar, A., Sharma, V.: Tweet recommender model using adaptive neuro-fuzzy inference system. Future Gener. Comput. Syst. 112, 996–1009 (2020). https://doi.org/10.1016/j.future.2020.04.001

    Article  Google Scholar 

  11. Jalal, M., Grasley, Z., Gurganus, C., Bullard, J.: Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete. Constr. Build. Mater. 256, 119478 (2020)

    Article  Google Scholar 

  12. Kanishcheva, O., Vysotska, V., Chyrun, L., Gozhyj, A.: Method of integration and content management of the information resources network. In: Shakhovska, N., Stepashko, V. (eds.) CSIT 2017. AISC, vol. 689, pp. 204–216. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-70581-1_14

    Chapter  Google Scholar 

  13. Kluska, J.: Adaptive fuzzy control of state-feedback time-delay systems with uncertain parameters. Inf. Sci. 540, 202–220 (2020). https://doi.org/10.1016/j.ins.2020.06.015

    Article  MathSciNet  Google Scholar 

  14. Lefebvre, T., et al.: Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis. Eur. Radiol. 29(12), 6477–6488 (2019). https://doi.org/10.1007/s00330-019-06331-4

    Article  Google Scholar 

  15. Liang, J., Gu, X.: Development and application of a non-destructive pavement testing system based on linear structured light three-dimensional measurement. Constr. Build. Mater. 260, 119919 (2020)

    Article  Google Scholar 

  16. Mishchuk, O., Tkachenko, R., Izonin, I.: Missing data imputation through SGTM neural-like structure for environmental monitoring tasks. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) ICCSEEA 2019. AISC, vol. 938, pp. 142–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-16621-2_13

    Chapter  Google Scholar 

  17. Naum, O., Chyrun, L., Vysotska, V., Kanishcheva, O.: Intellectual system design for content formation. In: Proceedings of the 12th International Scientific and Technical Conference on Computer Sciences and Information Technologies, CSIT 2017, vol. 1, pp. 131–138. Institute of Electrical and Electronics Engineers Inc. (2017). https://doi.org/10.1109/STC-CSIT.2017.8098753

  18. Pasternak, M., Jasek, K., Grabka, M.: Surface acoustic waves application for gas leakage detection. Diagnostyka 21(1), 35–39 (2020). https://doi.org/10.29354/diag/116078

    Article  Google Scholar 

  19. Rajabi, A., Omidi Moaf, F., Abdelgader, H.: Evaluation of mechanical properties of two-stage concrete and conventional concrete using nondestructive tests. J. Mater. Civil Eng. 32(7), art. no. 04020185 (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003247

  20. Sharko, A., Buhay, N.: System for complex non-destructive testing of metals mechanical properties. Reliab. Durab. Mach. Struct. 8, 104–106 (1985)

    Google Scholar 

  21. Shirgan, S.S., Bombale, U.L.: Hybrid neural network based wideband spectrum behavior sensing predictor for cognitive radio application. Sens. Imaging 21(1), 1–21 (2020). https://doi.org/10.1007/s11220-020-00293-4

    Article  Google Scholar 

  22. Sutin, A., Salloum, H.: Interaction of acoustic and EM waves in NDE and medical applications. In: Proceedings of the 26th International Congress on Sound and Vibration, ICSV 2019 (2019)

    Google Scholar 

  23. Vásárhelyi, L., Kónya, Z., Kukovecz, A., Vajtai, R.: Microcomputed tomography-based characterization of advanced materials: a review. Mater. Today Adv. 8, art. no. 100084 (2020). https://doi.org/10.1016/j.mtadv.2020.100084

  24. Zadeh, L.A., Abbasov, A.M., Shahbazova, S.N.: Fuzzy-based techniques in human-like processing of social network data. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 23, 14–17 (2015)

    Article  Google Scholar 

  25. Łyżwa, P., Kłaczyński, M., Kazana, P.: Vibroacoustic methods of imaging in selected temporomandibular joint disorders during movement. Diagnostyka 19(3), 109–117 (2018). https://doi.org/10.29354/diag/94264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii Babichev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Babichev, S., Durnyak, B., Sharko, O., Sharko, A. (2020). Technique of Metals Strength Properties Diagnostics Based on the Complex Use of Fuzzy Inference System and Hybrid Neural Network. In: Babichev, S., Peleshko, D., Vynokurova, O. (eds) Data Stream Mining & Processing. DSMP 2020. Communications in Computer and Information Science, vol 1158. Springer, Cham. https://doi.org/10.1007/978-3-030-61656-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61656-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61655-7

  • Online ISBN: 978-3-030-61656-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics