Skip to main content

Diabetes Classification Techniques: A Brief State-of-the-Art Literature Review

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1277))

Included in the following conference series:

Abstract

Clinical data on diabetes patients are readily available in many countries and research directories. These data are not necessarily in the same format or do not contain error-free or clear information about diabetes. These incomprehensive and non-homogenous data are a great source of conflict for the practitioner and the research communities. Applying Computational Intelligence on these datasets makes it easier for patterns and relationships to be identified, and useful information or conclusions can be derived. Diabetes diagnosis falls under the data classification problem and so much literature exists in this subject area. This study aims to survey as much literature as can be found on the application of computational intelligence for diabetes classification from 2010–2020. Articles indexed in Scopus, IEEE, Web of Science, Google Scholar, and other scholarly databases were searched for up-to-date articles and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was used for article selection. We selected articles after inclusion and exclusion criteria were applied. We discuss the commonly used diabetes classification algorithms and datasets. Finally, a taxonomy based on whether the algorithms are standalone or hybrid and whether they are a variant of major algorithms or a comparative study is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Diabetes mellitus. (n.d.) Concise Dictionary of Modern Medicine. McGraw-Hill (2002). https://medical-dictionary.thefreedictionary.com/diabetes+mellitus. Accessed 9th Mar 2020

  2. International Diabetes Foundation. IDF Diabetes Atlas, 9th edn. Brussels, Belgium (2019). https://www.diabetesatlas.org

  3. American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes – 2018. Diabet. Care 41(Suppl 1), S13–27 (2018). https://doi.org/10.2337/dc18-s002

  4. Sun, Y.L., Zhang, D.L.: Machine learning techniques for screening and diagnosis of diabetes: a survey. Tehnički vjesnik 26(3), 872–880 (2019)

    Google Scholar 

  5. Kelarev, A.V., Stranieri, A., Yearwood, J.L.: Empirical study of decision trees and ensemble classifiers for monitoring of diabetes patients in pervasive healthcare. In: Proceedings of the International Conference on Network Based Information Systems (2012). https://doi.org/10.1109/NBiS.2012.20

  6. Kaur, G., Chhabra, A.: Improved J48 classification algorithm for the prediction of diabetes. Int. J. Comput. Appl. 98(22), 13–17 (2014). https://doi.org/10.5120/17314-7433

    Article  Google Scholar 

  7. Baitharu, T.R., Pani, S.K., Dhal, S.K.: Comparison of kernel selection for support vector machines using diabetes dataset. J. Comput. Sci. Appl. 3(6), 181–184 (2015)

    Google Scholar 

  8. Rau, H.H., Hsu, C.Y., Lin, Y.A., et al.: Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network. Comput. Methods Progr. Biomed. 125, 58 (2016). https://doi.org/10.1016/j.cmpb.2015.11.009

    Article  Google Scholar 

  9. Mamoshina, P., Vieira, A., Putin, E., et al.: Applications of deep learning in biomedicine. Mol. Pharm. 13(5), 1445–1454 (2016). https://doi.org/10.1021/acs.molpharmaceut.5b00982

    Article  Google Scholar 

  10. Ravi, D., Wong, C., Deligianni, F., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inf. 21(1), 4–21 (2017). https://doi.org/10.1109/JBHI.2016.2636665

    Article  Google Scholar 

  11. Cheruku, R., Edla, D.R., Kuppili, V.: SMRuleMiner: spider monkey based rule miner using novel fitness function for diabetes classification. Comput. Biol. Med. 81, 79–92 (2017). https://doi.org/10.1016/j.compbiomed.2016.12.009

    Article  Google Scholar 

  12. Larabi-Marie-Sainte, S., Aburahmah, L., Almohaini, R., Saba, T.: Current techniques for diabetes prediction: review and case study. Appl. Sci. 9(21), 4604 (2019)

    Google Scholar 

  13. Contreras, I., Vehi, J.: Artificial intelligence for diabetes management and decision support: literature review. J. Med. Internet Res. 20(5), e10775 (2018)

    Google Scholar 

  14. Jain, D., Singh, V.: Feature selection and classification systems for chronic disease prediction: A review. Egypt. Inf. J. 19(3), 179–189 (2018)

    Google Scholar 

  15. Kalantari, A., Kamsin, A., Shamshirband, S., Gani, A., Alinejad-Rokny, H., Chronopoulos, A.T.: Computational intelligence approaches for classification of medical data: state-of-the-art, future challenges and research directions. Neurocomputing 276, 2–22 (2018)

    Article  Google Scholar 

  16. Gujral, S.: Early diabetes detection using machine learning: a review. Int. J. Innov. Res. Sci. Technol. 3(10), 57–62 (2017)

    Google Scholar 

  17. Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., Chouvarda, I.: Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 15, 104–116 (2017)

    Article  Google Scholar 

  18. Shankaracharya, D.O., Samanta, S., Vidyarthi, A.S.: Computational intelligence in early diabetes diagnosis: a review. Rev. Diabet. Stud. RDS 7(4), 252 (2010)

    Article  Google Scholar 

  19. Saravananathan, K., Velmurugan, T.: Impact of classification algorithms in diabetes data: a survey. In: 3rd International Conference on Small Medium Business, pp. 271–275 (2016)

    Google Scholar 

  20. Zarkogianni, K., et al.: A review of emerging technologies for the management of diabetes mellitus. IEEE Trans. Biomed. Eng. 62(12), 2735–2749 (2015)

    Google Scholar 

  21. Kaur, P., Sharma, M.: A survey on using nature inspired computing for fatal disease diagnosis. Int. J. Inf. Syst. Model. Des. (IJISMD) 8(2), 70–91 (2017)

    Google Scholar 

  22. Ramos-Figueroa, O., Quiroz-Castellanos, M., Mezura-Montes, E., Schütze, O.: Metaheuristics to solve grouping problems: a review and a case study. Swarm Evol. Comput. 53, 100643 (2020)

    Google Scholar 

  23. Alić, B., Gurbeta, L., Badnjević, A.: Machine learning techniques for classification of diabetes and cardiovascular diseases. In: 2017 6th Mediterranean Conference on Embedded Computing (MECO), pp. 1–4. IEEE, June 2017

    Google Scholar 

  24. Abhari, S., Niakan Kalhori, S.R., Ebrahimi, M., Hasannejadasl, H., Garavand, A.: Artificial intelligence applications in type 2 diabetes mellitus care: focus on machine learning methods. Healthc. Inf. Res. 25(4), 248–261 (2019)

    Google Scholar 

  25. Pekel, E., Özcan, T.: Diagnosis of diabetes mellitus using statistical methods and machine learning algorithms. Sigma J. Eng. Nat. Sci./Mühendislik ve Fen Bilimleri Dergisi 36(4) (2018)

    Google Scholar 

  26. Dzakiyullah, N.R., Burhanuddin, M.A., Ikram, R.R.R., Ghani, K.A., Setyonugroho, W.: Int. J. Innov. Technol. Explor. Eng. 8(12), 2199–2205 (2019). https://doi.org/10.35940/ijitee.l2973.1081219

  27. Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6(7), e1000100 (2009). https://doi.org/10.1371/journal.pmed.1000100

    Article  Google Scholar 

  28. Wei, S., Zhao, X., Miao, C.: A comprehensive exploration to the machine learning techniques for diabetes identification. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 291–295. IEEE, February 2018

    Google Scholar 

  29. Barhate, R., Kulkarni, P.: Analysis of classifiers for prediction of type ii diabetes mellitus. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–6. IEEE, August 2018

    Google Scholar 

  30. Mohammadian, S., Karsaz, A., Roshan, Y.M.: A comparative analysis of classification algorithms in diabetic retinopathy screening. In: 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 84–89. IEEE, October 2017

    Google Scholar 

  31. Dutta, D., Paul, D., Ghosh, P.: Analysing feature importances for diabetes prediction using machine learning. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), pp. 924–928. IEEE, November 2018

    Google Scholar 

  32. Kohli, P.S., Arora, S.: Application of machine learning in disease prediction. In: 2018 4th International Conference on Computing Communication and Automation (ICCCA), pp. 1–4. IEEE, December 2018

    Google Scholar 

  33. Mir, A., Dhage, S.N.: Diabetes disease prediction using machine learning on big data of healthcare. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 1–6. IEEE, August 2018

    Google Scholar 

  34. Vigneswari, D., Kumar, N.K., Raj, V.G., Gugan, A., Vikash, S.R.: Machine learning tree classifiers in predicting diabetes mellitus. In: 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), pp. 84–87. IEEE, March 2019

    Google Scholar 

  35. Perveen, S., Shahbaz, M., Keshavjee, K., Guergachi, A.: Metabolic syndrome and development of diabetes mellitus: predictive modeling based on machine learning techniques. IEEE Access 7, 1365–1375 (2018)

    Google Scholar 

  36. Komi, M., Li, J., Zhai, Y., Zhang, X.: Application of data mining methods in diabetes prediction. In: 2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 1006–1010. IEEE, June 2017

    Google Scholar 

  37. Kumar, P.S., Pranavi, S.: Performance analysis of machine learning algorithms on diabetes dataset using big data analytics. In: 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), pp. 508–513. IEEE, December 2017

    Google Scholar 

  38. Dwivedi, Ashok Kumar: Analysis of computational intelligence techniques for diabetes mellitus prediction. Neural Comput. Appl. 30(12), 3837–3845 (2017). https://doi.org/10.1007/s00521-017-2969-9

    Article  Google Scholar 

  39. Birjais, Roshan., Mourya, Ashish Kumar., Chauhan, Ritu, Kaur, Harleen: Prediction and diagnosis of future diabetes risk: a machine learning approach. SN Appl. Sci. 1(9), 1–8 (2019). https://doi.org/10.1007/s42452-019-1117-9

    Article  Google Scholar 

  40. Rawat, V., Suryakant, S.: A classification system for diabetic patients with machine learning techniques. Int. J. Math. Eng. Manage. Sci. 4, 729–744 (2019). https://doi.org/10.33889/ijmems.2019.4.3-057

  41. Thammi Reddy, A., Nagendra, M.: Minimal rule-based classifiers using PCA on pima-Indians-diabetes-dataset. Int. J. Innov. Technol. Explor. Eng. 8(12), 4414–4420 (2019). https://doi.org/10.35940/ijitee.l2476.1081219

  42. Pandeeswary, P., Janaki, M.: Performance analysis of big data classification techniques on diabetes prediction. Int. J. Innov. Technol. Explor. Eng. 8(10), 533–537 (2019). https://doi.org/10.35940/ijitee.j8840.0881019

  43. Kaur, H., Kumari, V.: Predictive modelling and analytics for diabetes using a machine learning approach. Appl. Comput. Inf. (2019). https://doi.org/10.1016/j.aci.2018.12.004

    Article  Google Scholar 

  44. Rajesh, K., Sangeetha, V.: Application of data mining methods and techniques for diabetes diagnosis. Int. J. Eng. Innov. Technol. (IJEIT) 2(3), 224–229 (2012)

    Google Scholar 

  45. Xie, Z., Nikolayeva, O., Luo, J., Li, D.: Peer reviewed: building risk prediction models for type 2 diabetes using machine learning techniques. Prev. Chronic Dis. 16 (2019)

    Google Scholar 

  46. Farran, B., AlWotayan, R., Alkandari, H., Al-Abdulrazzaq, D., Channanath, A., Thangavel, A.T.: Use of non-invasive parameters and machine-learning algorithms for predicting future risk of type 2 diabetes: a retrospective cohort study of health data from Kuwait. Front. Endocrinol. 10, 624 (2019)

    Google Scholar 

  47. Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., Tang, H.: Predicting diabetes mellitus with machine learning techniques. Front. Genet. 9, 515 (2018)

    Google Scholar 

  48. Talaei-Khoei, A., Wilson, J.M.: Identifying people at risk of developing type 2 diabetes: a comparison of predictive analytics techniques and predictor variables. Int. J. Med. Inf. 119, 22–38 (2018)

    Google Scholar 

  49. Cheruku, R., Edla, D.R., Kuppili, V.: Diabetes classification using radial basis function network by combining cluster validity index and BAT optimization with novel fitness function. Int. J. Comput. Intell. Syst. 10(1), 247 (2017). https://doi.org/10.2991/ijcis.2017.10.1.17

    Article  Google Scholar 

  50. Edla, D., Cheruku, R.: Diabetes-finder: a bat optimized classification system for type-2 diabetes. Procedia Comput. Sci. 115, 235–242 (2017). https://doi.org/10.1016/j.procs.2017.09.130

    Article  Google Scholar 

  51. Muwal, S., Narender, K.: A hybrid nature-inspired classification technique for medical diagnosis. Int. J. Comput. Appl. 153(4), 32–38 (2016). https://doi.org/10.5120/ijca2016912003

    Article  Google Scholar 

  52. Thirugnanam, M., Kumar, P., Srivatsan, S., Nerlesh, C.R.: Improving the prediction rate of diabetes diagnosis using fuzzy, neural network, case based (FNC) approach. Procedia Eng. 38, 1709–1718 (2012). https://doi.org/10.1016/j.proeng.2012.06.208

    Article  Google Scholar 

  53. Mansourypoor, F., Asadi, S.: Development of a reinforcement learning-based evolutionary fuzzy rule-based system for diabetes diagnosis. Comput. Biol. Med. 91, 337–352 (2017)

    Google Scholar 

  54. Maniruzzaman, M., et al.: Comparative approaches for classification of diabetes mellitus data: machine learning paradigm. Comput. Methods Prog. Biomed. 152, 23–34 (2017)

    Google Scholar 

  55. Santhanam, T., Padmavathi, M.S.: Application of K-means and genetic algorithms for dimension reduction by integrating SVM for diabetes diagnosis. Procedia Comput. Sci. 47, 76–83 (2015)

    Google Scholar 

  56. Hegde, S., Hedge, R.: Symmetry based feature selection with multi layer perceptron for the prediction of chronic disease. Int. J. Recent Technol. Eng. 8(2), 3316–3322 (2019). https://doi.org/10.35940/ijrte.b2658.078219

  57. Raghavendra, S., Santosh Kumar, J.: Performance evaluation of random forest with feature selection methods in prediction of diabetes. Int. J. Electr. Comput. Eng. 2088–8708, 10 (2020)

    Google Scholar 

  58. Perveen, S., Shahbaz, M., Ansari, M.S., Keshavjee, K., Guergachi, A.: A hybrid approach for modeling type 2 diabetes mellitus progression. Front. Genet. 10, 1076 (2020). https://doi.org/10.3389/fgene.2019.01076

    Article  Google Scholar 

  59. Choubey, Dilip Kumar., Kumar, Prabhat., Tripathi, Sudhakar, Kumar, Santosh: Performance evaluation of classification methods with PCA and PSO for diabetes. Netw. Model. Anal. Health Inform. Bioinform. 9(1), 1–30 (2019). https://doi.org/10.1007/s13721-019-0210-8

    Article  Google Scholar 

  60. Beschi Raja, J., Anitha, R., Sujatha, R., Roopa, V., Sam Peter, S.: Diabetics prediction using gradient boosted classifier. Int. J. Eng. Adv. Technol. 9(1), 3181–3183 (2019). https://doi.org/10.35940/ijeat.a9898.109119

  61. Suvarnamukhi, B., Seshashayee, M.: Big data processing system for diabetes prediction using machine learning technique. Int. J. Innov. Technol. Explor. Eng. 8(12), 4478–4483 (2019). https://doi.org/10.35940/ijitee.l3515.1081219

  62. Perveen, S., Shahbaz, M., Keshavjee, K., Guergachi, A.: prognostic modeling and prevention of diabetes using machine learning technique. Sci. Rep. 9(1), 1–9 (2019). https://doi.org/10.1038/s41598-019-49563-6

    Article  Google Scholar 

  63. Sohail, N., Jiadong, R., Muhammad, M., Tahir, S., Arshad, J., Verghese, A.: An accurate clinical implication assessment for diabetes mellitus prevalence based on a study from Nigeria. Processes 7, 289 (2019). https://doi.org/10.3390/pr7050289

    Article  Google Scholar 

  64. Nilashi, M., Ibrahim, O., Mardani, A., Ahani, A., Jusoh, A.: A soft computing approach for diabetes disease classification. Health Inf. J. 24 (2016). https://doi.org/10.1177/1460458216675500

  65. Fitriyani, N.L., Syafrudin, M., Alfian, G., Rhee, J.: Development of disease prediction model based on ensemble learning approach for diabetes and hypertension. IEEE Access 7, 144777–144789 (2019). https://doi.org/10.1109/access.2019.2945129

    Article  Google Scholar 

  66. Mirshahvalad, R., Zanjani, N.: Diabetes prediction using ensemble perceptron algorithm, pp. 190–194 (2017). https://doi.org/10.1109/cicn.2017.8319383

  67. Li, L.: Diagnosis of diabetes using a weight-adjusted voting approach, pp. 320–324 (2014). https://doi.org/10.1109/bibe.2014.27

  68. Wang, Q., Cao, W., Guo, J., Ren, J., Cheng, Y., and Davis, D.N.: DMP_MI: an effective diabetes mellitus classification algorithm on imbalanced data with missing values. IEEE Access, p. 1 (2019). https://doi.org/10.1109/access.2019.2929866

  69. Stoean, R., Stoean, C., Preuss, M., El-Darzi, E., Dumitrescu, D.: Evolutionary support vector machines for diabetes mellitus diagnosis, pp. 182–187 (2006). https://doi.org/10.1109/is.2006.348414

  70. Ravindranath, V., Ra, S., Ramasubbareddy, S., Remya, S., Nalluri, S.: Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset, pp. 1–5 (2017). https://doi.org/10.1109/iccni.2017.8123815

  71. Bhatia, K., Syal, R.: Predictive analysis using hybrid clustering in diabetes diagnosis, pp. 447–452 (2017). https://doi.org/10.1109/rdcape.2017.8358313

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Absalom E. Ezugwu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agushaka, J.O., Ezugwu, A.E. (2020). Diabetes Classification Techniques: A Brief State-of-the-Art Literature Review. In: Florez, H., Misra, S. (eds) Applied Informatics. ICAI 2020. Communications in Computer and Information Science, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-61702-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61702-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61701-1

  • Online ISBN: 978-3-030-61702-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics