Skip to main content

Fully Fuzzy Multi-objective Berth Allocation Problem

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

The Berth Allocation (BA) problem is an important problem in port logistics. It aims at finding optimal berthing times and positions of arriving vessels in a wharf subject to physical constraints. The optimisation criteria in the BA problem are diverse and respond to specific interests of vessels and wharves operators. Furthermore, although the BA problem has been dealt with mostly under complete certainty, it is a highly uncertain problem due to many factors that can affect vessels arrival and handling times. This paper takes fuzzy uncertainty into account and presents a fully fuzzy two-objective BA problem, by considering the minimisation of the total waiting time of vessels and the makespan of the wharf operation from the perspectives of vessels and wharves operators, respectively. A fuzzy epsilon-constraint method and a lexicographic method for fully fuzzy linear programming with inequality constraints are used jointly to solve the problem. A numerical example is given as illustration. Results demonstrate the usefulness of the proposed approach in handling fuzziness and conflicting objectives simultaneously in a BA problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellman, R.E., Zadeh, L.A.: Decision-making in fuzzy environment. Manag. Sci. 17(4), 141–164 (1970). https://doi.org/10.1287/mnsc.17.4.B141

    Article  MathSciNet  MATH  Google Scholar 

  2. Bojadziev, G., Bojadziev, M.: Fuzzy sets, fuzzy Logic, applications. In: Advances in Fuzzy Systems – Applications and Theory, vol. 5. World Scientific Publishing (1995)

    Google Scholar 

  3. Cheong, C., Tan, K., Liu, D.: Solving the berth allocation problem with service priority via multi-objective optimization. In: 2009 IEEE Symposium on Computational Intelligence in Scheduling, vol. 117576, pp. 95–102. IEEE (2009). https://doi.org/10.1109/SCIS.2009.4927021

  4. Das, S.K., Mandal, T., Edalatpanah, S.A.: A mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell. 46(3), 509–519 (2017). https://doi.org/10.1007/s10489-016-0779-x

    Article  Google Scholar 

  5. Expósito-Izquiero, C., Lalla-Ruiz, E., Lamata, T., Melián-Batista, B., Moreno-Vega, J.M.: Fuzzy optimization models for seaside port logistics: berthing and quay crane scheduling. In: Madani, K., Dourado, A., Rosa, A., Filipe, J., Kacprzyk, J. (eds.) Computational Intelligence. SCI, vol. 613, pp. 323–343. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-23392-5_18

    Chapter  Google Scholar 

  6. Farhadinia, B.: Ranking fuzzy numbers based on lexicographical ordering. Int. J. Appl. Math. Comput. Sci. 5(4), 248–251 (2009)

    Google Scholar 

  7. Greco, S., Ehrgott, M., Figueira, J.R.: Multiple Criteria Decision Analysis. ISOR, vol. 233. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3094-4

    Book  MATH  Google Scholar 

  8. Gupta, A., Kumar, A., Kaur, A.: Mehar’s method to find exact fuzzy optimal solution of unbalanced fully fuzzy multi-objective transportation problems. Optim. Lett. 6(8), 1737–1751 (2012). https://doi.org/10.1007/s11590-011-0367-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutierrez, F., Lujan, E., Asmat, R., Vergara, E.: Fully fuzzy linear programming model for the berth allocation problem with two quays. In: Bello, R., Falcon, R., Verdegay, J.L. (eds.) Uncertainty Management with Fuzzy and Rough Sets. SFSC, vol. 377, pp. 87–113. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10463-4_5

    Chapter  Google Scholar 

  10. Gutierrez, F., Lujan, E., Asmat, R., Vergara, E.: Fuzziness in the berth allocation problem. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 795, pp. 149–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99648-6_9

    Chapter  MATH  Google Scholar 

  11. Hanss, M.: Applied Fuzzy Arithmetic. Springer, Heidelberg (2005). https://doi.org/10.1007/b138914

    Book  MATH  Google Scholar 

  12. Hashemi, S.M., Modarres, M., Nasrabadi, E., Nasrabadi, M.M.: Fully fuzzified linear programming, solution and duality. J. Intell. Fuzzy Syst. 17(1), 253–261 (2006)

    MATH  Google Scholar 

  13. Hosseinzadeh Lotfi, F., Allahviranloo, T., Alimardani Jondabeh, M., Alizadeh, L.: Solving a full fuzzy linear programming using lexicography method and fuzzy approximate solution. Appl. Math. Model. 33, 3151–3156 (2009). https://doi.org/10.1016/j.apm.2008.10.020

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, K.H., Moon, K.C.: Berth scheduling by simulated annealing. Transp. Res. Part B: Methodol. 37(6), 541–560 (2003). https://doi.org/10.1016/S0191-2615(02)00027-9

    Article  Google Scholar 

  15. López Plata, I.: Improvement of the logistics processes in maritime container terminals through intelligent optimization techniques. Ph.D. dissertation, University of La Laguna, Spain (2020)

    Google Scholar 

  16. Maher, S.J., et al.: The SCIP Optimization Suite 4.0. Technical report, Optimization Online, March 2017. http://www.optimization-online.org/DB_HTML/2017/03/5895.html

  17. Mitchell, S., O’Sullivan, M., Dunning, I.: PuLP: a linear programming toolkit for python (2011). http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf. The University of Auckland, Auckland, New Zealand

  18. Pérez-Cañedo, B., Concepción-Morales, E.R.: A method to find the unique optimal fuzzy value of fully fuzzy linear programming problems with inequality constraints having unrestricted L-R fuzzy parameters and decision variables. Expert Syst. Appl. 123, 256–269 (2019). https://doi.org/10.1016/j.eswa.2019.01.041

    Article  Google Scholar 

  19. Pérez-Cañedo, B., Verdegay, J.L., Miranda Pérez, R.: An epsilon-constraint method for fully fuzzy multiobjective linear programming. Int. J. Intell. Syst. 35(4), 600–624 (2020). https://doi.org/10.1002/int.22219

    Article  Google Scholar 

  20. Wang, M.L., Wang, H.F., Chih-Lung, L.: Ranking fuzzy number based on lexicographic screening procedure. Int. J. Inf. Technol. Decis. Making 4(4), 663–678 (2005). https://doi.org/10.1142/S0219622005001696

    Article  Google Scholar 

  21. Wang, W., Wang, Z.: Total orderings defined on the set of all fuzzy numbers. Fuzzy Sets Syst. 243, 131–141 (2014). https://doi.org/10.1016/j.fss.2013.09.005

    Article  MathSciNet  MATH  Google Scholar 

  22. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research of José Luis Verdegay is supported in part by project TIN2017-86647-P (Spanish Ministry of Economy and Competitiveness and FEDER funds from the European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Pérez-Cañedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Cañedo, B., Verdegay, J.L., Rosete, A., Concepción-Morales, E.R. (2020). Fully Fuzzy Multi-objective Berth Allocation Problem. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics