Abstract
Simultaneous localization and mapping (SLAM) is process highly relevant for autonomous systems. Accurate sensing provided by range sensors such as the M8 Quanergy LiDAR improves the speed and accuracy of SLAM, which can become an integral part of the control of innovative autonomous cars. In this paper we propose a hybrid point cloud registration method that profits from the high accuracy of classic iterated closest points (ICP) algorithm, and the robustness of the Normal Distributions Transform (NDT) registration method. We report positive results in an in-house experiment encouraging further research and experimentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13, 99–110 (2006)
Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13, 108–117 (2006)
Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32, 1309–1332 (2016)
Xuexi, Z., Guokun, L., Genping, F., Dongliang, X., Shiliu, L.: SLAM algorithm analysis of mobile robot based on Lidar. In: 2019 Chinese Control Conference (CCC), pp. 4739–4745, July 2019
Yagfarov, R., Ivanou, M., Afanasyev, I.: Map comparison of Lidar-based 2D SLAM algorithms using precise ground truth. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1979–1983 (2018)
Caminal, I., Casas, J.R., Royo, S.: SLAM-based 3D outdoor reconstructions from Lidar data. In: 2018 International Conference on 3D Immersion (IC3D), pp. 1–8, December 2018
Wu, D., Meng, Y., Zhan, K., Ma, F.: A Lidar SLAM based on point-line features for underground mining vehicle. In: 2018 Chinese Automation Congress (CAC), pp. 2879–2883, November 2018
Deng, Y., Shan, Y., Gong, Z., Chen, L.: Large-scale navigation method for autonomous mobile robot based on fusion of GPS and Lidar SLAM. In: 2018 Chinese Automation Congress (CAC), pp. 3145–3148, November 2018
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)
Biber, P., Straßer, W.: The normal distributions transform: a new approach to laser scan matching, vol. 3, pp. 2743–2748, December 2003
Mitteta, M.A., Nouira, H., Roynard, X., Goulette, F., Deschaud, J.E.: Experimental assessment of the Quanergy M8 LIDAR Sensor. ISPRS Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 41B5, 527–531 (2016)
Aguilar-Moreno, M., Graña, M.: A comparison of registration methods for SLAM with the M8 Quanergy LiDAR. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 824–834. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_79
Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Robot. 34, 133–148 (2013). https://doi.org/10.1007/s10514-013-9327-2
Magnusson, M., Lilienthal, A., Duckett, T.: Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 24, 803–827 (2007)
Acknowledgments
This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P, and grant IT1284-19 as university research group of excellence from the Basque Government.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Aguilar-Moreno, M., Graña, M. (2020). An Hybrid Registration Method for SLAM with the M8 Quanergy LiDAR. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-61705-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61704-2
Online ISBN: 978-3-030-61705-9
eBook Packages: Computer ScienceComputer Science (R0)