Skip to main content

An Hybrid Registration Method for SLAM with the M8 Quanergy LiDAR

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12344))

Included in the following conference series:

  • 1183 Accesses

Abstract

Simultaneous localization and mapping (SLAM) is process highly relevant for autonomous systems. Accurate sensing provided by range sensors such as the M8 Quanergy LiDAR improves the speed and accuracy of SLAM, which can become an integral part of the control of innovative autonomous cars. In this paper we propose a hybrid point cloud registration method that profits from the high accuracy of classic iterated closest points (ICP) algorithm, and the robustness of the Normal Distributions Transform (NDT) registration method. We report positive results in an in-house experiment encouraging further research and experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://doi.org/10.5281/zenodo.3636204.

References

  1. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13, 99–110 (2006)

    Article  Google Scholar 

  2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13, 108–117 (2006)

    Article  Google Scholar 

  3. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Rob. 32, 1309–1332 (2016)

    Article  Google Scholar 

  4. Xuexi, Z., Guokun, L., Genping, F., Dongliang, X., Shiliu, L.: SLAM algorithm analysis of mobile robot based on Lidar. In: 2019 Chinese Control Conference (CCC), pp. 4739–4745, July 2019

    Google Scholar 

  5. Yagfarov, R., Ivanou, M., Afanasyev, I.: Map comparison of Lidar-based 2D SLAM algorithms using precise ground truth. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1979–1983 (2018)

    Google Scholar 

  6. Caminal, I., Casas, J.R., Royo, S.: SLAM-based 3D outdoor reconstructions from Lidar data. In: 2018 International Conference on 3D Immersion (IC3D), pp. 1–8, December 2018

    Google Scholar 

  7. Wu, D., Meng, Y., Zhan, K., Ma, F.: A Lidar SLAM based on point-line features for underground mining vehicle. In: 2018 Chinese Automation Congress (CAC), pp. 2879–2883, November 2018

    Google Scholar 

  8. Deng, Y., Shan, Y., Gong, Z., Chen, L.: Large-scale navigation method for autonomous mobile robot based on fusion of GPS and Lidar SLAM. In: 2018 Chinese Automation Congress (CAC), pp. 3145–3148, November 2018

    Google Scholar 

  9. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  10. Biber, P., Straßer, W.: The normal distributions transform: a new approach to laser scan matching, vol. 3, pp. 2743–2748, December 2003

    Google Scholar 

  11. Mitteta, M.A., Nouira, H., Roynard, X., Goulette, F., Deschaud, J.E.: Experimental assessment of the Quanergy M8 LIDAR Sensor. ISPRS Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 41B5, 527–531 (2016)

    Article  Google Scholar 

  12. Aguilar-Moreno, M., Graña, M.: A comparison of registration methods for SLAM with the M8 Quanergy LiDAR. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 824–834. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_79

    Chapter  Google Scholar 

  13. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Robot. 34, 133–148 (2013). https://doi.org/10.1007/s10514-013-9327-2

    Article  Google Scholar 

  14. Magnusson, M., Lilienthal, A., Duckett, T.: Scan registration for autonomous mining vehicles using 3D-NDT. J. Field Robot. 24, 803–827 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by FEDER funds through MINECO project TIN2017-85827-P, and grant IT1284-19 as university research group of excellence from the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marina Aguilar-Moreno or Manuel Graña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar-Moreno, M., Graña, M. (2020). An Hybrid Registration Method for SLAM with the M8 Quanergy LiDAR. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics