Skip to main content

Evaluation of Error Metrics for Meta-learning Label Definition in the Forecasting Task

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12344))

Included in the following conference series:

  • 1015 Accesses

Abstract

Meta-learning has been successfully applied to time series forecasting. For such, it uses meta-datasets created by previous machine learning applications. Each row in a meta-dataset represents a time series dataset. Each row, apart from the last, is meta-feature describing aspects of the related dataset. The last column is a target value, a meta-label. Here, the meta-label is the forecasting model with the best predictive performance for a specific error metric. In the previous studies applying meta-learning to time series forecasting, error metrics have been arbitrarily chosen. We believe that the error metric used can affect the results obtained by meta-learning. This study presents an experimental analysis of the predictive performance obtained by using different error metrics for the definition of the meta-label value. The experiments performed used 100 time series collected from the ICMC time series prediction open access repository, which has time series from a large variety of application domains. A traditional meta-learning framework for time series forecasting was used in this work. According to the experimental results, the mean absolute error can be the best metric for meta-label definition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Datasets are available here.

References

  1. Ali, A.R., Gabrys, B., Budka, M.: Cross-domain meta-learning for time-series forecasting. Procedia Comput. Sci. 126, 9–18 (2018)

    Article  Google Scholar 

  2. Armstrong, J.S.: Combining forecasts. In: Armstrong J.S. (eds) Principles of Forecasting. International Series in Operations Research & Management Science, vol 30. Springer, Boston, MA (2001) https://doi.org/10.1007/978-0-306-47630-3_19

  3. Barak, S., Nasiri, M., Rostamzadeh, M.: Time series model selection with a meta-learning approach: evidence from a pool of forecasting algorithms. arXiv preprint arXiv:1908.08489 (2019)

  4. Bergmeir, C.N., et al.: Neural networks in r using the stuttgart neural network simulator: RSNNS. J. Stat. Softw. (2012)

    Google Scholar 

  5. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. John Wiley & Sons (2015)

    Google Scholar 

  6. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to data mining. Cognitive Technologies. Springer Science & Business Media, Springer-Verlag Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-73263-1

    Book  MATH  Google Scholar 

  7. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. CRC Press Book, Monterey, CA (1984)

    MATH  Google Scholar 

  8. Cryer, J.D., Chan, K.S.: Time Series Analysis: With Applications in R, 2nd edn. Springer Texts in Statistics, Springer (2008). https://doi.org/10.1007/978-0-387-75959-3

    Book  MATH  Google Scholar 

  9. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR (1994)

    Google Scholar 

  10. Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with exponential smoothing: the state space approach. Springer Series in Statistics. Springer Science & Business Media, Springer-Verlag Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-71918-2

    Book  MATH  Google Scholar 

  11. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts (2018)

    Google Scholar 

  12. Hyndman, R.J., et al.: Automatic Time Series for Forecasting: The Forecast Package for R. Monash University, Department of Econometrics and Business Statistics. (2007)

    Google Scholar 

  13. Hyndman, R.J., et al.: Another look at forecast-accuracy metrics for intermittent demand. Foresight Int. J. Appl. Forecast. 4(4), 43–46 (2006)

    MathSciNet  Google Scholar 

  14. Kuhn, M.: The caret package. R Found. Stat. Comput. Vienna, Austria. https://cran.r-project.org/package=caret (2012)

  15. Kück, M., Crone, S.F., Freitag, M.: Meta-learning with neural networks and landmarking for forecasting model selection an empirical evaluation of different feature sets applied to industry data. In: 2016 International Joint Conference on Neural Networks (IJCNN) (2016)

    Google Scholar 

  16. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast combination. Neurocomput. 73(10–12), 2006–2016 (2010)

    Article  Google Scholar 

  17. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News. 2(3), 18–22 (2002). https://CRAN.R-project.org/doc/Rnews/

  18. Makridakis, S., Spiliotis, E., Assimakopoulos, V.: Statistical and machine learning forecasting methods: concerns and ways forward. PloS one 13(3), e0194889 (2018)

    Article  Google Scholar 

  19. Mantovani, R.G., Rossi, A.L.D., Alcobaça, E., Vanschoren, J., de Carvalho, A.C.P.L.F.: A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves SVM classifiers. Inf. Sci. 501, 193–221 (2019)

    Google Scholar 

  20. Marsland, S.: Machine Learning: An Algorithmic Perspective. Chapman and Hall/CRC (2014)

    Google Scholar 

  21. Meade, N.: Evidence for the selection of forecasting methods. J. Forecast. 19(6), 515–535 (2000)

    Article  Google Scholar 

  22. Medeiros, M.C., Teräsvirta, T., Rech, G.: Building neural network models for time series: a statistical approach. J. Forecast. 25(1), 49–75 (2006)

    Article  MathSciNet  Google Scholar 

  23. Mersmann, O., et al.: Microbenchmark: accurate timing functions. R Package Version 1(4–2), 1 (2015)

    Google Scholar 

  24. Montgomery, D.C., Johnson, L.A., Gardiner, J.S.: Forecasting and Time Series Analysis. McGraw-Hill Companies (1990)

    Google Scholar 

  25. Parmezan, A.R.S., Batista, G.E.A.P.A.: ICMC-USP time series prediction repository. Instituto de Ciências Matemáticas e de Computa cao, Universidade de Sao Paulo, Sao Carlos, Brasil (2014) https://goo.gl/uzxGZJ

  26. Pimentel, B.A., de Carvalho, A.C.P.L.F.: A new data characterization for selecting clustering algorithms using meta-learning. Inf. Sci. 477, 203–219 (2019)

    Google Scholar 

  27. Prudêncio, R.B., Ludermir, T.B.: Meta-learning approaches to selecting time series models. Neurocomput. 61, 121–137 (2004)

    Article  Google Scholar 

  28. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  29. Shah, C.: Model selection in univariate time series forecasting using discriminant analysis. Int. J. Forecast. 13(4), 489–500 (1997)

    Article  Google Scholar 

  30. Feres de Souza, B., Soares, C., de Carvalho, A.C.: Meta-learning approach to gene expression data classification. Int. J. Intell. Comput. Cybern. 2(2), 285–303 (2009)

    Google Scholar 

  31. Tsay, R.S.: Multivariate Time Series Analysis: with R and Financial Applications. John Wiley & Sons (2013)

    Google Scholar 

  32. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002)

    Article  Google Scholar 

  33. Widodo, A., Budi, I.: Model selection using dimensionality reduction of time series characteristics. In: International Symposium on Forecasting, Seoul, South Korea (2013)

    Google Scholar 

  34. Wolpert, D.H.: The lack of a priori distinctions between learning algorithms. Neural Comput. 8(7), 1341–1390 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) - Process 2019/10012-2 and Intel Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moisés R. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, M.R., Mundim, L.R., Carvalho, A.C.P.L.F. (2020). Evaluation of Error Metrics for Meta-learning Label Definition in the Forecasting Task. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics