Skip to main content

Multi-expert Methods Evaluation on Financial and Economic Data: Introducing Bag of Experts

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

The use of machine learning into economics scenarios results appealing since it allows for automatically testing economic models and predict consumer/client behavior to support decision-making processes. The finance market typically uses a set of expert labelers or Bureau credit scores given by governmental or private agencies such as Experian, Equifax, and Creditinfo, among others. This work focuses on introducing a so-named Bag of Expert (BoE): a novel approach for creating multi-expert Learning (MEL) frameworks aimed to emulate real experts labeling (human-given labels) using neural networks. The MEL systems “learn” to perform decision-making tasks by considering a uniform number of labels per sample or individuals along with respective descriptive variables. The BoE is created similarly to Generative Adversarial Network (GANs), but rather than using noise or perturbation by a generator, we trained a feed-forward neural network to randomize sampling data, and either add or decrease hidden neurons. Additionally, this paper aims to investigate the performance on economics-related datasets of several state-of-the-art MEL methods, such as GPC, GPC-PLAT, KAAR, MA-LFC, MA-DGRL, and MA-MAE. To do so, we develop an experimental framework composed of four tests: the first one using novice experts; the second with proficient experts; the third is a mix of novices, intermediate and proficient experts, and the last one uses crowd-sourcing. Our BoE method presents promising results and can be suitable as an alternative to properly assess the reliability of both MEL methods and conventional labeler generators (i.e., virtual expert labelers).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Attigeri, G., Manohara Pai, M., Pai, R.: Framework to predict NPA/willful defaults in corporate loans: a big data approach. Int. J. Electr. Comput. Eng. 9(5), 3786–3797 (2019)

    Google Scholar 

  2. Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. IEEE Potentials 13(4), 27–31 (1994)

    Article  Google Scholar 

  3. Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Wortman, J.: Learning bounds for domain adaptation (2009)

    Google Scholar 

  4. Chang, V.: Generation of a HER2 breast cancer gold-standard using supervised learning from multiple experts. In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 45–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_6

    Chapter  Google Scholar 

  5. Crammer, K., Kearns, M., Wortman, J.: Learning from multiple sources. J. Mach. Learn. Res. 9, 1757–1774 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Danenas, P., Garsva, G., Simutis, R.: Development of discriminant analysis and majority-voting based credit risk assessment classifier. vol. 1, pp. 204–209 (2011)

    Google Scholar 

  7. Dekel, O., Shamir, O.: Good Learners for Evil Teachers. Association for Computing Machinery, New York (2009)

    Google Scholar 

  8. Donmez, P., Carbonell, J.G., Schneider, J.: Efficiently Learning the Accuracy of Labeling Sources for Selective Sampling. Association for Computing Machinery, New York (2009)

    Google Scholar 

  9. Dua, D., Graff, C.: UCI machine learning repository

    Google Scholar 

  10. Gil-Gonzalez, J., Alvarez-Meza, A., Orozco-Gutierrez, A.: Learning from multiple annotators using kernel alignment. Pattern Recogn. Lett. 116, 150–156 (2018)

    Article  Google Scholar 

  11. Groot, P., Birlutiu, A., Heskes, T.: Learning from multiple annotators with Gaussian processes. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6792, pp. 159–164. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21738-8_21

    Chapter  Google Scholar 

  12. Kim, M.J., Min, S.H., Han, I.: An evolutionary approach to the combination of multiple classifiers to predict a stock price index. Expert Syst. Appl. 31(2), 241–247 (2006)

    Article  Google Scholar 

  13. Klepac, G.: Customer profiling in complex analytical environments using swarm intelligence algorithms. Int. J. Swarm Intell. Res. (IJSIR) 7(3), 43–70 (2016)

    Article  Google Scholar 

  14. Lee, T., Cho, J., Kwon, D., Sohn, S.: Global stock market investment strategies based on financial network indicators using machine learning techniques. Expert Syst. Appl. 117, 228–242 (2019)

    Article  Google Scholar 

  15. Long, C., Hua, G., Kapoor, A.: A joint gaussian process model for active visual recognition with expertise estimation in crowdsourcing. Int. J. Comput. Vis. 116(2), 136–160 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mahapatra, D.: Combining multiple expert annotations using semi-supervised learning and graph cuts for medical image segmentation. Comput. Vis. Image Underst. 151, 114–123 (2016)

    Article  Google Scholar 

  17. Murillo Rendón, S.: Metodología para el aprendizaje de máquina a partir de múltiples expertos en procesos de clasificación de bioseñales. Ph.D. thesis

    Google Scholar 

  18. Nir, G., et al.: Automatic grading of prostate cancer in digitized histopathology images: learning from multiple experts. Med. Image Anal. 50, 167–180 (2018)

    Article  Google Scholar 

  19. Patwardhan, S., Yadav, D., Parlikar, S.: A review of role of data mining techniques in portfolio management. J. Adv. Res. Dyn. Control Syst. 11(2 Special Issue), 674–681 (2019)

    Google Scholar 

  20. Peluffo-Ordóñez, D., Murillo-Rendón, S., Arias-Londoño, J., Castellanos-Domínguez, G.: A multi-class extension for multi-labeler support vector machines, pp. 701–706 (2014)

    Google Scholar 

  21. Raykar, V., et al.: Supervised learning from multiple experts : whom to trust when everyone lies a bit, vol. 382 (2009)

    Google Scholar 

  22. Raykar, V., et al.: Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322 (2010)

    MathSciNet  Google Scholar 

  23. Rodrigues, F., Pereira, F., Ribeiro, B.: Learning from multiple annotators: distinguishing good from random labelers. Pattern Recogn. Lett. 34(12), 1428–1436 (2013)

    Article  Google Scholar 

  24. Rodrigues, F., Pereira, F., Ribeiro, B.: Gaussian process classification and active learning with multiple annotators. In: Xing, E.P., Jebara, T. (eds.) Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research PMLR, Bejing, China, 22–24 June 2014, vol. 32, pp. 433–441 (2014)

    Google Scholar 

  25. Valizadegan, H., Nguyen, Q., Hauskrecht, M.: Learning classification models from multiple experts. J. Biomed. Inform. 46(6), 1125–1135 (2013)

    Article  Google Scholar 

  26. Wang, W., Zhou, Z.: Learnability of multi-instance multi-label learning. Chin. Sci. Bull. 57(19), 2488–2491 (2012)

    Article  Google Scholar 

  27. Wiebe, J., Mihalcea, R.: Word sense and subjectivity, vol. 1, pp. 1065–1072 (2006)

    Google Scholar 

  28. Yan, Y., Rosales, R., Fung, G., Subramanian, R., Dy, J.: Learning from multiple annotators with varying expertise. Mach. Learn. 95(3), 291–327 (2013). https://doi.org/10.1007/s10994-013-5412-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Yun, H., Lee, M., Kang, Y., Seok, J.: Portfolio management via two-stage deep learning with a joint cost. Expert Syst. Appl. 143, 113041 (2020)

    Article  Google Scholar 

  30. Zhang, J., Wu, X., Sheng, V.S.: Imbalanced multiple noisy labeling. IEEE Trans. Knowl. Data Eng. 27(2), 489–503 (2015)

    Article  Google Scholar 

  31. Zhang, Q., Yang, L.T., Chen, Z., Li, P., Bu, F.: An adaptive dropout deep computation model for industrial IoT big data learning with crowdsourcing to cloud computing. IEEE Trans. Ind. Inform. 15(4), 2330–2337 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by the Smart Data Analysis Systems Group - SDAS Research Group (http://sdas-group.com)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Umaquinga-Criollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Umaquinga-Criollo, A.C., Tamayo-Quintero, J.D., Moreno-García, M.N., Riascos, J.A., Peluffo-Ordóñez, D.H. (2020). Multi-expert Methods Evaluation on Financial and Economic Data: Introducing Bag of Experts. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics