Abstract
We propose a novel adaptive version of the Neighborhood Retrieval Visualizer (NeRV). The data samples’ neighborhood widths are determined on the basis of the data scattering in the high-dimensional input space. The scattering of input data is measured using the inner-cluster variance quantity, obtained as a result of the preliminary data clustering in the input space. The combination of the pre-clustering and the subsequent NeRV projection can be recognized as a hybrid approach. The experimental study carried out on two different real datasets verified and confirmed the effectiveness of the introduced approach and the correctness of the theoretical claim of the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml
Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). http://circ.ahajournals.org/cgi/content/full/101/23/e215, circulation Electronic Pages
Ippoliti, D., Zhou, X.: A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection. J. Parallel Distrib. Comput. 72(12), 1576–1590 (2012)
Kohonen, T.: The self-organizing map. Proc. IEEE 28, 1464–1480 (1990)
Koringa, P.A., Mitra, S.K.: L1-norm orthogonal neighbourhood preserving projection and its applications. Pattern Anal. Appl. 22(4), 1481–1492 (2019)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Lu, Y., Lai, Z., Li, X., Wong, W.K., Yuan, C., Zhang, D.: Low-Rank 2-D neighborhood preserving projection for enhanced robust image representation. IEEE Trans. Cybern. 49(5), 1859–1872 (2019)
Olszewski, D.: Asymmetric k-Means algorithm. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011. LNCS, vol. 6594, pp. 1–10. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20267-4_1
Olszewski, D.: An experimental study on asymmetric self-organizing map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 42–49. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23878-9_6
Olszewski, D.: k-Means clustering of asymmetric data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012. LNCS (LNAI), vol. 7208, pp. 243–254. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28942-2_22
Olszewski, D., Kacprzyk, J., Zadrożny, S.: Time series visualization using asymmetric self-organizing map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 40–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1_5
Olszewski, D., Šter, B.: Asymmetric clustering using the alpha-beta divergence. Pattern Recogn. 47(5), 2031–2041 (2014)
Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 13(6), 1331–1341 (2002)
Tian, Z., Dey, N., Ashour, A.S., McCauley, P., Shi, F.: Morphological segmenting and neighborhood pixel-based locality preserving projection on brain fMRI dataset for semantic feature extraction: an affective computing study. Neural Comput. Appl. 30(12), 3733–3748 (2017). https://doi.org/10.1007/s00521-017-2955-2
Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Olszewski, D. (2020). An Adaptive Neighborhood Retrieval Visualizer. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-61705-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61704-2
Online ISBN: 978-3-030-61705-9
eBook Packages: Computer ScienceComputer Science (R0)