Skip to main content

Effective Bin Picking Approach by Combining Deep Learning and Point Cloud Processing Techniques

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

Within the concept of “Industry 4.0”, one of the fundamental pillars is the concept of intelligent manufacturing. This type of manufacturing demands a high level of adaptability to design changes, greater flexibility in the adjustment of processes and an intensive use of digital information to improve them, being advanced robotics one of the key technologies to achieve this goal.

Classical industrial robotics is evolving towards another production model, which demands the rapid reconfiguration of robotic installations to manufacture different and varied products in smaller batches. In a production environment where flexibility and readjustment to the manufacture of new products must be carried out quickly, one of the fundamental tasks to be accomplished in robotics to reach these objectives efficiently is Bin Picking.

The problem of Bin Picking is one of the basic problems in artificial vision applied to robotics, and although there are numerous research studies related to this problem, it is difficult to seek the adaptability of the solutions provided to a real environment.

The present research work presents a new procedure for the solution of the Bin Picking problem, of quick configuration and execution based on artificial intelligence and point cloud processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyajima, R.: Deep learning triggers a new era in industrial robotics. IEEE Multimed. 24, 91–96 (2017). https://doi.org/10.1109/MMUL.2017.4031311

    Article  Google Scholar 

  2. Wada, K., Murooka, M., Okada, K., Inaba, M.: 3D object segmentation for shelf bin picking by humanoid with deep learning and occupancy voxel grid map. IEEE-RAS International Conference on Humanoid Robots, pp. 1149–1154 (2016). https://doi.org/10.1109/HUMANOIDS.2016.7803415

  3. Griffiths, D., Boehm, J.: A review on deep learning techniques for 3D sensed data classification. Remote Sens. 11 (2019). https://doi.org/10.3390/rs11121499

  4. Periyasamy, A.S., Schwarz, M., Behnke, S.: Robust 6D object pose estimation in cluttered scenes using semantic segmentation and pose regression networks. In: IEEE International Conference on Intelligent Robots and Systems, pp. 6660–6666 (2018). https://doi.org/10.1109/IROS.2018.8594406

  5. Doumanoglou, A., Kouskouridas, R., Malassiotis, S., Kim, T.-K.: 6D object detection and next-best-view prediction in the crowd (2015). https://doi.org/10.1109/CVPR.2016.390

  6. Schwarz, M., Behnke, S.: PointNet deep learning for RGB-D object perception in cluttered bin picking. In: IEEE International Conference on Robotics and Automation, pp. 2–4 (2017). https://doi.org/10.1109/3DV.2016.68

  7. Schwarz, M., et al.: NimbRo picking: versatile part handling for warehouse automation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3032–3039 (2017). https://doi.org/10.1109/ICRA.2017.7989348

  8. Lin, C.M., Tsai, C.Y., Lai, Y.C., Li, S.A., Wong, C.C.: Visual object recognition and pose estimation based on a deep semantic segmentation network. IEEE Sens. J. 18, 9370–9381 (2018). https://doi.org/10.1109/JSEN.2018.2870957

    Article  Google Scholar 

  9. Dong, Z., et al.: PPR-Net: point-wise pose regression network for instance segmentation and 6D pose estimation in bin-picking scenarios, pp. 1773–1780 (2020). https://doi.org/10.1109/iros40897.2019.8967895

  10. Blank, A., et al.: 6DoF pose-estimation pipeline for texture-less industrial components in bin picking applications. In: Proceedings 2019 European Conference on Mobile Robots ECMR 2019, pp. 1–7 (2019). https://doi.org/10.1109/ECMR.2019.8870920

  11. Sock, J., Kim, K.I., Sahin, C., Kim, T.K.: Multi-task deep networks for depth-based 6D object pose and joint registration in crowd scenarios. In: British Machine Vision Conference 2018, BMVC 2018, pp. 1–12 (2019)

    Google Scholar 

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  13. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 4510–4520 (2018). https://doi.org/10.1109/CVPR.2018.00474

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints David. Int. J. Comput. Vis. 60(2), 1–28 (2004)

    Article  Google Scholar 

  15. Besl, P., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  16. Drost, B., Ulrich, M., Bergmann, P., Hartinger, P., Steger, C.: Introducing MVTec ITODD - a dataset for 3D object recognition in industry. In: Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) 2017, 2018 Janua, pp. 2200–2208 (2017). https://doi.org/10.1109/ICCVW.2017.257

  17. Murphy, K.P.: Machine Learning - A Probabilistic Perspective - Table-of-Contents. MIT Press (2012). https://doi.org/10.1038/217994a0

    Article  Google Scholar 

  18. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels. In: Advances in Neural Information Processing Systems 2018, pp. 8778–8788 December 2018 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Tellaeche Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iglesias, A.T., Pastor-López, I., Urquijo, B.S., García-Bringas, P. (2020). Effective Bin Picking Approach by Combining Deep Learning and Point Cloud Processing Techniques. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics