Skip to main content

Fall Detection Based on Local Peaks and Machine Learning

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12344))

Included in the following conference series:

Abstract

This research focuses on Fall Detection (FD) using on-wrist wearable devices including tri-axial accelerometers performing FD autonomously. This type of approaches makes use of an event detection stage followed by some pre-processing and a final classification stage. The event detection stage is basically performed using thresholds or a combination of thresholds and finite state machines. In this research, we extend our previous work and propose an event detection method free of thresholds to tune or adapt to the user that reduces the number of false alarms; we also consider a mixture between the two approaches. Additionally, a set of features is proposed as an alternative to those used in previous research. The classification of the samples is performed using a Deep Learning Neural Network and the experimentation performs a comparison of this research to a published and well-known technique using the UMA Fall, one of the publicly available simulated fall detection data sets. Results show the improvements in the event detection using the new proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity recognition using vision-based method. J. Healthc. Eng. 2017, article ID 3090343, 31 p. (2017). https://doi.org/10.1155/2017/3090343

  2. Rimminen, H., Lindström, J., Linnavuo, M., Sepponen, R.: Detection of falls among the elderly by a floor sensor using the electric near field. IEEE Trans. Inf. Technol. Biomed. 14, 1475–1476 (2010)

    Article  Google Scholar 

  3. Principi, E., Droghini, D., Squartinia, S., Olivetti, P., Piazza, F.: Acoustic cues from the floor: a new approach for fall classification. Exp. Syst. Appl. 60, 51–61 (2016)

    Article  Google Scholar 

  4. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. BioMed. Eng. OnLine 12, 66 (2013). https://doi.org/10.1186/1475-925X-12-66

    Article  Google Scholar 

  5. Godfrey, A.: Wearables for independent living in older adults: gait and falls. Maturitas 100, 16–26 (2017)

    Article  Google Scholar 

  6. Zhang, T., Wang, J., Xu, L., Liu, P.: Fall detection by wearable sensor and one-class SVM algorithm. In: Huang, D.S., Li, K., I.G. (ed.) Intelligent Computing in Signal Processing and Pattern Recognition. Volume 345 of Lecture Notes in Control and Information Systems, pp. 858–863. Springer, Berlin Heidelberg (2006). https://doi.org/10.1007/978-3-540-37258-5_104

  7. Hakim, A., Huq, M.S., Shanta, S., Ibrahim, B.: Smartphone based data mining for fall detection: analysis and design. Proc. Comput. Sci. 105, 46–51 (2017)

    Article  Google Scholar 

  8. Wu, F., Zhao, H., Zhao, Y., Zhong, H.: Development of a wearable-sensor-based fall detection system. Int. J. Telemed. Appl. 2015, 11 (2015)

    Google Scholar 

  9. Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based triaxial accelerometer fall detection algorithm. Gait Posture 26, 194–199 (2007)

    Article  Google Scholar 

  10. Huynh, Q.T., Nguyen, U.D., Irazabal, L.B., Ghassemian, N., Tran, B.Q.: Optimization of an accelerometer and gyroscope-based fall detection algorithm. J. Sens. 2015, article ID 452078, 8 p. (2015). https://doi.org/10.1155/2015/452078

  11. Chaudhuri, S., Thompson, H., Demiris, G.: Fall detection devices and their use with older adults. J. Geriatr. Phys. Therapy 37, 178–196 (2014)

    Article  Google Scholar 

  12. Casilari-Pérez, E., García-Lagos, F.: A comprehensive study on the use of artificial neural networks in wearable fall detection systems. Exp. Syst. Appl. 138, 112811 (2019)

    Article  Google Scholar 

  13. Fang, Y.C., Dzeng, R.J.: A smartphone-based detection of fall portents for construction workers. Proc. Eng. 85, 147–156 (2014)

    Article  Google Scholar 

  14. Fang, Y.C., Dzeng, R.J.: Accelerometer-based fall-portent detection algorithm for construction tiling operation. Autom. Constr. 84, 214–230 (2017)

    Article  Google Scholar 

  15. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsaä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28, 285–291 (2008)

    Article  Google Scholar 

  16. Casilari, E., Lora-Rivera, R., García-Lagos, F.: A wearable fall detection system using deep learning. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds.) IEA/AIE 2019. LNCS (LNAI), vol. 11606, pp. 445–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22999-3_39

    Chapter  Google Scholar 

  17. Wu, X., Cheng, L., Chu, C.-H., Kim, J.: Using deep learning and smartphone for automatic detection of fall and daily activities. In: Chen, H., Zeng, D., Yan, X., Xing, C. (eds.) ICSH 2019. LNCS, vol. 11924, pp. 61–74. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34482-5_6

    Chapter  Google Scholar 

  18. Santos, G.L., Endo, P.T., de Carvalho Monteiro, K.H., da Silva Rocha, E., Silva, I., Lynn, T.: Accelerometer-based human fall detection using convolutional neural networks. Sensors 19, 1–12 (2019)

    Article  Google Scholar 

  19. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P.: AlessioVecchio: a smartphone-based fall detection system. Pervasive Mobile Comput. 8(6), 883–899 (2012)

    Article  Google Scholar 

  20. Delahoz, Y.S., Labrador, M.A.: Survey on fall detection and fall prevention using wearable and external sensors. Sensors 14(10), 19806–19842 (2014)

    Article  Google Scholar 

  21. Khojasteh, S.B., Villar, J.R., de la Cal, E., González, V.M., Sedano, J., YAZG̈AN, H.R.: Evaluation of a wrist-based wearable fall detection method. In: 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, pp. 377–386 (2018). https://doi.org/10.1007/978-3-319-92639-1_31

  22. Khojasteh, S.B., Villar, J.R., Chira, C., González, V.M., de la Cal, E.: Improving fall detection using an on-wrist wearable accelerometer. Sensors 18, 1350 (2018)

    Article  Google Scholar 

  23. Villar, J.R., de la Cal, E., Fañez, M., González, V.M., Sedano, J.: User-centered fall detection using supervised, on-line learning and transfer learning. Prog. Artif. Intell. 8(4), 453–474 (2019). https://doi.org/10.1007/s13748-019-00190-2

    Article  Google Scholar 

  24. Villar, M., Villar, J.R.: Peak detection enhancement in autonomous wearable fall detection. In: 19th International Conference on Intelligent Systems Design and Applications (2019)

    Google Scholar 

  25. Palshikar, G.K.: Simple algorithms for peak detection in time-series. Technical report, Tata Research Development and Design Centre (2009)

    Google Scholar 

  26. Villar, J.R., González, S., Sedano, J., Chira, C., Trejo-Gabriel-Galán, J.M.: Improving human activity recognition and its application in early stroke diagnosis. Int. J. Neural Syst. 25(4), 1450036–1450055 (2015)

    Article  Google Scholar 

  27. Casilari, E., Santoyo-Ramón, J.A., Cano-García, J.M.: Umafall: a multisensor dataset for the research on automatic fall detection. Proc. Comput. Sci. 110(Supplement C), 32–39 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This research has been funded by the Spanish Ministry of Science and Innovation, under project MINECO-TIN2017-84804-R, and by the Grant FC-GRUPIN-IDI/2018/000226 project from the Asturias Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Villar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villar, J.R., Villar, M., Fañez, M., de la Cal, E., Sedano, J. (2020). Fall Detection Based on Local Peaks and Machine Learning. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics