Skip to main content

Uncertainty Estimation for Semantic Segmentation of Hyperspectral Imagery

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12312))

Included in the following conference series:

Abstract

As a step in a Dynamic Data-Driven Applications Systems (DDDAS) method to characterize the background in a vehicle tracking problem, we extend the application of deep learning to a hyperspectral dataset (the AeroRIT dataset) to evaluating network uncertainty. Expressing uncertainty information is crucial for evaluating what additional information is needed in the DDDAS algorithm and where more resources are required. Hyperspectral signatures tend to be very noisy, when captured from an aerial flight and a slight shift in the atmospheric conditions can alter the signals significantly, which in turn may affect the trained network’s classifications. In this work, we apply Deep Ensembles, Monte Carlo Dropout and Batch Ensembles and study their effects with respect to achieving robust pixel-level identifications by expressing the uncertainty within the trained networks on the task of semantic segmentation. We modify the U-Net-m architecture from the AeroRIT paper to account for the frameworks and present our results as a step towards accounting for sensitive changes in hyperspectral signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)

  2. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. arXiv preprint arXiv:1505.05424 (2015)

  3. Cobb, A.D., et al.: An ensemble of bayesian neural networks for exoplanetary atmospheric retrieval. Astronomical J. 158(1), 33 (2019)

    Article  Google Scholar 

  4. Darema, F.: Dynamic data driven applications systems: a new paradigm for application simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_86

    Chapter  Google Scholar 

  5. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? does it matter? Structural Safety 31(2), 105–112 (2009)

    Article  Google Scholar 

  6. Fletcher, S., Lickley, M., Strzepek, K.: Learning about climate change uncertainty enables flexible water infrastructure planning. Nat. Commun. 10(1), 1–11 (2019)

    Article  Google Scholar 

  7. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: international Conference on Machine Learning, pp. 1050–1059 (2016)

    Google Scholar 

  8. Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109 (2017)

  9. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)

  10. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5574–5584 (2017)

    Google Scholar 

  11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems, pp. 6402–6413 (2017)

    Google Scholar 

  12. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  13. Rangnekar, A., Mokashi, N., Ientilucci, E.J., Kanan, C., Hoffman, M.J.: Aerorit: a new scene for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 1, 1–9 (2020)

    Google Scholar 

  14. Rao, V., Sandu, A.: A posteriori error estimates for dddas inference problems. Procedia Comput. Sci. 29, 1256–1265 (2014)

    Article  Google Scholar 

  15. Ritter, H., Botev, A., Barber, D.: A scalable laplace approximation for neural networks. In: 6th International Conference on Learning Representations, ICLR 2018-Conference Track Proceedings. vol. 6. International Conference on Representation Learning (2018)

    Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Uzkent, B., Rangnekar, A., Hoffman, M.J.: Aerial vehicle tracking by adaptive fusion of hyperspectral likelihood maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 233–242. IEEE (2017)

    Google Scholar 

  18. Uzkent, B., Rangnekar, A., Hoffman, M.J.: Tracking in aerial hyperspectral videos using deep kernelized correlation filters. IEEE Trans. Geosci. Remote Sens. 57(1), 449–461 (2018)

    Article  Google Scholar 

  19. Wen, Y., Tran, D., Ba, J.: Batchensemble: An alternative approach to efficient ensemble and lifelong learning (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Dynamic Data Driven Applications Systems Program, Air Force Office of Scientific Research under Grant FA9550-19-1-0021. We gratefully acknowledge the support of NVIDIA Corporation with the donations of the Titan X and Titan Xp Pascal GPUs used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneesh Rangnekar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 71 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rangnekar, A., Ientilucci, E., Kanan, C., Hoffman, M.J. (2020). Uncertainty Estimation for Semantic Segmentation of Hyperspectral Imagery. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics